⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gauher.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
% compute abscissas and weight factors for Gaussian-Hermite quadrature%% CALL:  [x,w]=gauher(N)%  %  x = base points (abscissas)%  w = weight factors%  N = number of base points (abscissas) (integrates a (2N-1)th order%      polynomial exactly)%%  p(x)=exp(-x^2/2)/sqrt(2*pi), a =-Inf, b = Inf %%  The Gaussian Quadrature integrates a (2n-1)th order%  polynomial exactly and the integral is of the form%           b                         N%          Int ( p(x)* F(x) ) dx  =  Sum ( w_j* F( x_j ) )%           a                        j=1		          %%      this procedure uses the coefficients a(j), b(j) of the%      recurrence relation%%           b p (x) = (x - a ) p   (x) - b   p   (x)%            j j            j   j-1       j-1 j-2%%      for the various classical (normalized) orthogonal polynomials,%      and the zero-th moment%%           1 = integral w(x) dx%%      of the given polynomial's weight function w(x).  Since the%      polynomials are orthonormalized, the tridiagonal matrix is%      guaranteed to be symmetric.function [x,w]=gauher(N)    if N==20 % return precalculated values        x=[ -7.619048541679757;-6.510590157013656;-5.578738805893203;            -4.734581334046057;-3.943967350657318;-3.18901481655339 ;            -2.458663611172367;-1.745247320814127;-1.042945348802751;            -0.346964157081356; 0.346964157081356; 1.042945348802751;             1.745247320814127; 2.458663611172367; 3.18901481655339 ;             3.943967350657316; 4.734581334046057; 5.578738805893202;             6.510590157013653; 7.619048541679757];        w=[  0.000000000000126; 0.000000000248206; 0.000000061274903;             0.00000440212109 ; 0.000128826279962; 0.00183010313108 ;             0.013997837447101; 0.061506372063977; 0.161739333984   ;             0.260793063449555; 0.260793063449555; 0.161739333984   ;             0.061506372063977; 0.013997837447101; 0.00183010313108 ;             0.000128826279962; 0.00000440212109 ; 0.000000061274903;             0.000000000248206; 0.000000000000126 ];    else        b = sqrt( (1:N-1)/2 )';            [V,D] = eig( diag(b,1) + diag(b,-1) );        w = V(1,:)'.^2;        x = sqrt(2)*diag(D);    end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -