⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covmatern3iso.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
function [A, B] = covMatern3iso(loghyper, x, z)% Matern covariance function with nu = 3/2 and isotropic distance measure. The% covariance function is:%% k(x^p,x^q) = s2f * (1 + sqrt(3)*d(x^p,x^q)) * exp(-sqrt(3)*d(x^p,x^q))%% where d(x^p,x^q) is the distance sqrt((x^p-x^q)'*inv(P)*(x^p-x^q)), P is ell% times the unit matrix and sf2 is the signal variance. The hyperparameters% are:%% loghyper = [ log(ell)%              log(sqrt(sf2)) ]%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-24)if nargin == 0, A = '2'; return; endpersistent K;[n, D] = size(x);ell = exp(loghyper(1));sf2 = exp(2*loghyper(2));x = sqrt(3)*x/ell;if nargin == 2                                      % compute covariance matrix  A = sqrt(sq_dist(x'));  K = sf2*exp(-A).*(1+A);  A = K;elseif nargout == 2                              % compute test set covariances  z = sqrt(3)*z/ell;  A = sf2;  B = sqrt(sq_dist(x',z'));  B = sf2*exp(-B).*(1+B);else                                              % compute derivative matrices  if z == 1    A = sf2*sq_dist(x').*exp(-sqrt(sq_dist(x')));  else    % check for correct dimension of the previously calculated kernel matrix    if any(size(K)~=n)        K = sqrt(sq_dist(x'));      K = sf2*exp(-K).*(1+K);    end    A = 2*K;    clear K;  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -