⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernel_k_means.m

📁 kernel kmeans is a fast and efficeient kmeans algorithm implementation
💻 M
字号:
function [patterns, targets, label] = kernel_k_means(train_patterns, train_targets, params, plot_on)

%Reduce the number of data points using the kernel k-means algorithm
%Inputs:
%	train_patterns	- Input patterns
%	train_targets	- Input targets
%	params			- [Number of output data points, Kernel type, kernel parameter]
%                     Kernel can be one of: Gauss, RBF (Same as Gauss), Poly, Sigmoid, or Linear
%                     The kernel parameters are:
%                       RBF kernel  - Gaussian width (One parameter)
%                       Poly kernel - Polynomial degree
%                       Sigmoid     - The slope and constant of the sigmoid (in the format [1 2], with no separating commas)
%					    Linear		- None needed
%   plot_on         - Plot stages of the algorithm
%
%Outputs
%	patterns		- New patterns
%	targets			- New targets
%	label			- The labels given for each of the original patterns

if (nargin < 4),
    plot_on = 0;
end

%Get parameters
[Nmu, kernel, kernel_params] = process_params(params);

max_iter= 1000;
[D,L]	= size(train_patterns);
dist	= zeros(Nmu,L);
label   = zeros(1,L);

%Kernelize the training patterns
y       = kernelize(kernel, kernel_params, train_patterns, train_patterns);

%Use Nmu random points as the start points for the algorithm
in      = randperm(L);
mu      = train_patterns(:, in(1:Nmu));

%Start iterating
iter               = 0;
assignment_changed = 1;
while assignment_changed & (iter < max_iter)
    old_label = label;
    iter      = iter + 1;

    %Find the distance of each cluster center from each data point
    y_mu    = kernelize(kernel, kernel_params, mu, mu);
    y_cross = kernelize(kernel, kernel_params, train_patterns, mu);
    dist    = ones(Nmu, 1)*diag(y)' - 2*y_cross + diag(y_mu)*ones(1,L);

    %Label the points
    [m, label] = min(dist);

    %Recompute the mu's
    for i = 1:Nmu,
        in_pat    = find(label == i);
        switch length(in_pat)
            case 0,
                mu(:, i)  = zeros(D, 1);
            case 1,
                mu(:, i)  = train_patterns(:, in_pat);
            otherwise
                mu(:,i) = mean(train_patterns(:,in_pat)')';
        end
    end

    %Plot the centers during the process
    plot_process(mu, plot_on)

    assignment_changed = any(old_label ~= label);
end

%Classify the patterns
targets   = zeros(1,Nmu);
Uc        = unique(train_targets);
for i = 1:Nmu,
    if (length(unique(train_targets(:,find(label == i)))) == 1)
        targets(i) = unique(train_targets(:,find(label == i)));
    else
        N = hist(train_targets(:,find(label == i)), Uc);
        if (~isempty(N))
            [m, max_l] = max(N);
            targets(i) = Uc(max_l);
        end
    end
end

patterns = mu;




%END kernel k-means

function y = kernelize(kernel, kernel_params, patterns, base_patterns)

Nf  = size(patterns, 2);
Nb  = size(base_patterns, 2);
y	= zeros(Nb, Nf);

switch kernel,
    case {'Gauss','RBF'},
        for i = 1:Nf,
            y(:,i)    = exp(-sum((base_patterns-patterns(:,i)*ones(1,Nb)).^2)'/(2*kernel_params^2));
        end
    case {'Poly', 'Linear'}
        if strcmp(kernel, 'Linear')
            kernel_params = 1;
        end

        for i = 1:Nf,
            y(:,i) = (base_patterns'*patterns(:,i) + 1).^kernel_params;
        end
    case 'Sigmoid'
        kernel_params = str2num(kernel_params);

        if (length(kernel_params) ~= 2)
            error('This kernel needs two parameters to operate!')
        end

        for i = 1:Nf,
            y(:,i) = tanh(base_patterns'*patterns(:,i)*kernel_params(1)+kernel_params(2));
        end
    otherwise
        error('Unknown kernel. Can be Gauss, Linear, Poly, or Sigmoid.')
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -