📄 svm_final.m
字号:
function [ypred]=SVM_final(x,Test,y,nbclasses,fn,koptions)
% This code use to compute the SVM classifier
% This code is edited by Eng. Alaa Tharwat Abd El. Monaaim Othman from Egypt
% Teaching assistant in El Sorouk Academy for Computer Science And Information Technology
% Please for any help send to me Engalaatharwat@hotmail.com
% Please if you used this code please refer this references
% "Personal Identification based on statistical features" ,Atallah
% Hashad, Gouda I. Salama, Alaa Tharwat, Journal of AEIC, Vol. 10, Dec 2008.
% A version Dec. 2008
% kernel : kernel function
% Type Function Option
% Polynomial 'poly' Degree (<x,xsup>+1)^d
% Homogeneous polynomial 'polyhomog' Degree <x,xsup>^d
% Gaussian 'gaussian' Bandwidth
% Heavy Tailed RBF 'htrbf' [a,b] %see Chappelle 1999
% Mexican 1D Wavelet 'wavelet'
% Frame kernel 'frame' 'sin','numerical'...
%
% kerneloption : scalar or vector containing the option for the kernel
% 'gaussian' : scalar gamma is identical for all coordinates
% otherwise is a vector of length equal to the number of
% coordinate
%
%
% 'poly' : kerneloption is a scalar given the degree of the polynomial
% or is a vector which first element is the degree of the polynomial
% and other elements gives the bandwidth of each dimension.
% thus the vector is of size n+1 where n is the dimension of the problem.
%
%
verbose=0;
lambda=1e-2;
[xsup,w,b,nbsv]=svmmulticlassoneagainstall(x,y,nbclasses,1000,lambda,fn,koptions,verbose);
[ypred] = svmmultival(Test,xsup,w,b,nbsv,fn,koptions)
%fprintf( '\nRate of correct classification in Testing data : %2.2f
%%%\n',100*sum(ypred==y)/length(y));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -