⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zouhedynamics.hh

📁 open lattice boltzmann project www.openlb.org
💻 HH
字号:
/*  This file is part of the OpenLB library * *  Copyright (C) 2006,2007 Orestis Malaspinas and Jonas Latt *  Address: Rue General Dufour 24,  1211 Geneva 4, Switzerland  *  E-mail: jonas.latt@gmail.com * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License *  as published by the Free Software Foundation; either version 2 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public  *  License along with this program; if not, write to the Free  *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *  Boston, MA  02110-1301, USA.*/#ifndef ZOU_HE_DYNAMICS_HH#define ZOU_HE_DYNAMICS_HH#include "zouHeDynamics.h"#include "core/latticeDescriptors.h"#include "core/util.h"#include "core/lbHelpers.h"#include <cmath>namespace olb {using namespace descriptors;template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::ZouHeDynamics (        T omega_, Momenta<T,Lattice>& momenta_ )    : BasicDynamics<T,Lattice>(momenta_),      boundaryDynamics(omega_, momenta_){ }template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>*    ZouHeDynamics<T,Lattice, Dynamics, direction, orientation>::clone() const{    return new ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>(*this);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T ZouHeDynamics<T,Lattice, Dynamics, direction, orientation>::    computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{    return boundaryDynamics.computeEquilibrium(iPop, rho, u, uSqr);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::collide (        Cell<T,Lattice>& cell,        LatticeStatistics<T>& statistics ){    typedef lbHelpers<T,Lattice> lbH;    typedef Lattice<T> L;    // Along all the commented parts of this code there will be an example based    // on the situation where the wall's normal vector if (0,1) and the    // numerotation of the velocites are done according to the D2Q9     // lattice of the OpenLB library.    // Find all the missing populations    // (directions 3,4,5)    std::vector<int> missingIndexes = util::subIndexOutgoing<L,direction,orientation>();        // Will contain the missing poputations that are not normal to the wall.    // (directions 3,5)    std::vector<int> missingDiagonalIndexes = missingIndexes;    for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop)    {        int numOfNonNullComp = 0;        for (int iDim = 0; iDim < L:: d; ++iDim)            numOfNonNullComp += abs(L::c[missingIndexes[iPop]][iDim]);        if (numOfNonNullComp == 1)        {            missingDiagonalIndexes.erase(missingDiagonalIndexes.begin()+iPop);            break;        }    }    T rho, u[L::d];    T falseRho, falseU[L::d];    this->momenta.computeRhoU(cell, rho, u);    T uSqr = util::normSqr<T,L::d>(u);    // The unknown non equilibrium populations are bounced back    // (f[3] = feq[3] + fneq[7], f[4] = feq[4] + fneq[8],     //  f[5] = feq[5] + fneq[1])    for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop)    {        cell[missingIndexes[iPop]] = cell[util::opposite<L>(missingIndexes[iPop])]            - computeEquilibrium(util::opposite<L>(missingIndexes[iPop]), rho, u, uSqr)            + computeEquilibrium(missingIndexes[iPop], rho, u, uSqr);    }    // We recompute rho and u in order to have the new momentum and density. Since    // the momentum is not conserved from this scheme, we will corect it. By adding    // a contribution to the missingDiagonalVelocities.    lbH::computeRhoU(cell,falseRho,falseU);    T diff[L::d];    for (int iDim = 0; iDim < L:: d; ++iDim)        diff[iDim] = (rho*u[iDim] - falseRho*falseU[iDim])/ (T)missingDiagonalIndexes.size();    for (unsigned iPop = 0; iPop < missingDiagonalIndexes.size(); ++iPop)    {        for (int iDim = 1; iDim < L::d; ++iDim)        {            cell[missingDiagonalIndexes[iPop]] +=                    L::c[missingDiagonalIndexes[iPop]][(direction+iDim)%L::d] * diff[(direction+iDim)%L::d];        }    }    boundaryDynamics.collide(cell, statistics);    statistics.gatherStats(rho, uSqr);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::staticCollide (        Cell<T,Lattice>& cell,        const T u[Lattice<T>::d],        LatticeStatistics<T>& statistics ){    typedef lbHelpers<T,Lattice> lbH;    typedef Lattice<T> L;    std::vector<int> missingIndexes = util::subIndexOutgoing<L,direction,orientation>();    std::vector<int> missingDiagonalIndexes = missingIndexes;    for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop)    {        int numOfNonNullComp = 0;        for (int iDim = 0; iDim < L:: d; ++iDim)            numOfNonNullComp += abs(L::c[missingIndexes[iPop]][iDim]);        if (numOfNonNullComp == 1)        {            missingDiagonalIndexes.erase(missingDiagonalIndexes.begin()+iPop);            break;        }    }    T rho = this->momenta.computeRho(cell);    T uSqr = util::normSqr<T,L::d>(u);    for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop)    {        cell[missingIndexes[iPop]] = cell[util::opposite<L>(missingIndexes[iPop])]            - computeEquilibrium(util::opposite<L>(missingIndexes[iPop]), rho, u, uSqr)            + computeEquilibrium(missingIndexes[iPop], rho, u, uSqr);    }    T falseRho, falseU[L::d];    lbH::computeRhoU(cell,falseRho,falseU);    T diff[L::d];    for (int iDim = 0; iDim < L:: d; ++iDim)        diff[iDim] = (rho*u[iDim] - falseRho*falseU[iDim])/ (T)missingDiagonalIndexes.size();    for (unsigned iPop = 0; iPop < missingDiagonalIndexes.size(); ++iPop)    {        for (int iDim = 1; iDim < L::d; ++iDim)        {            cell[missingDiagonalIndexes[iPop]] +=                    L::c[missingDiagonalIndexes[iPop]][(direction+iDim)%L::d] * diff[(direction+iDim)%L::d];        }    }    boundaryDynamics.staticCollide(cell, u, statistics);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::getOmega() const {    return boundaryDynamics.getOmega();}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::setOmega(T omega_){    boundaryDynamics.setOmega(omega_);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::getParameter(int whichParameter) const {    return boundaryDynamics.getParameter(whichParameter);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void ZouHeDynamics<T,Lattice,Dynamics,direction,orientation>::setParameter(int whichParameter, T value){    boundaryDynamics.setParameter(whichParameter, value);}}  // namespace olb#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -