⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 extendedfinitedifferenceboundary2d.hh

📁 open lattice boltzmann project www.openlb.org
💻 HH
📖 第 1 页 / 共 2 页
字号:
/*  This file is part of the OpenLB library * *  Copyright (C) 2007 Orestis Malaspinas, Jonas Latt *  Address: Rue General Dufour 24,  1211 Geneva 4, Switzerland  *  E-mail: jonas.latt@gmail.com * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License *  as published by the Free Software Foundation; either version 2 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public  *  License along with this program; if not, write to the Free  *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *  Boston, MA  02110-1301, USA.*/#ifndef EXTENDED_FINITE_DIFFERENCE_BOUNDARY_2D_HH#define EXTENDED_FINITE_DIFFERENCE_BOUNDARY_2D_HH#include "extendedFiniteDifferenceBoundary2D.h"#include "core/finiteDifference2D.h"#include "core/blockLattice2D.h"#include "core/util.h"#include "core/lbHelpers.h"#include "core/firstOrderLbHelpers.h"#include "core/boundaryInstantiator2D.h"namespace olb {///////////  ExtendedStraightFdBoundaryPostProcessor2D ///////////////////////////////////template<typename T, template<typename U> class Lattice, int direction, int orientation>ExtendedStraightFdBoundaryPostProcessor2D<T,Lattice,direction,orientation>::    ExtendedStraightFdBoundaryPostProcessor2D(int x0_, int x1_, int y0_, int y1_)    : x0(x0_), x1(x1_), y0(y0_), y1(y1_) {    OLB_PRECONDITION(x0==x1 || y0==y1);}template<typename T, template<typename U> class Lattice, int direction, int orientation>void ExtendedStraightFdBoundaryPostProcessor2D<T,Lattice,direction,orientation>::    processSubDomain(BlockLattice2D<T,Lattice>& blockLattice, int x0_, int x1_, int y0_, int y1_){    using namespace olb::util::tensorIndices2D;    typedef lbHelpers<T,Lattice> lbH;    typedef Lattice<T> L;    enum {x,y};    int newX0, newX1, newY0, newY1;    if ( util::intersect (                x0, x1, y0, y1,                x0_, x1_, y0_, y1_,                newX0, newX1, newY0, newY1 ) )    {        for (int iX=newX0; iX<=newX1; ++iX) {            for (int iY=newY0; iY<=newY1; ++iY) {                Cell<T,Lattice>& cell = blockLattice.get(iX,iY);                T rho, u[L::d];                cell.computeRhoU(rho,u);                T uSqr = util::normSqr<T,Lattice<T>::d>(u);                T dx_U[L::d], dy_U[L::d];                interpolateGradients<0>(blockLattice, dx_U, iX, iY);                interpolateGradients<1>(blockLattice, dy_U, iX, iY);                T rhoGradU[L::d][L::d];                rhoGradU[x][x] = rho * dx_U[x];                rhoGradU[x][y] = rho * dx_U[y];                rhoGradU[y][x] = rho * dy_U[x];                rhoGradU[y][y] = rho * dy_U[y];                T omega = cell.getDynamics() -> getOmega();                T sToPi = - (T)1 / Lattice<T>::invCs2 / omega;                                T pi[util::TensorVal<Lattice<T> >::n];                pi[xx] = (T)2 * rhoGradU[x][x] * sToPi;                pi[yy] = (T)2 * rhoGradU[y][y] * sToPi;                pi[xy] = (rhoGradU[x][y] + rhoGradU[y][x]) * sToPi;                 // here ends the "regular" fdBoudaryCondition                 // implemented in OpenLB                // first we compute the term                 // (c_{i\alpha} \nabla_\beta)(rho*u_\alpha*u_\beta)                T dx_rho, dy_rho;                interpolateGradients<0>(blockLattice, dx_rho, iX, iY);                interpolateGradients<1>(blockLattice, dy_rho, iX, iY);                for (int iPop = 0; iPop < L::q; ++iPop) {                    T cGradRhoUU = T();                    for (int iAlpha=0; iAlpha < L::d; ++iAlpha)                    {                        cGradRhoUU += L::c[iPop][iAlpha] * (                            dx_rho*u[iAlpha]*u[x] +                            dx_U[iAlpha]*rho*u[x] +                            dx_U[x]*rho*u[iAlpha] + //end of dx derivatice                            dy_rho*u[iAlpha]*u[y] +                            dy_U[iAlpha]*rho*u[y] +                            dy_U[y]*rho*u[iAlpha]);                    }                    // then we compute the term                     // c_{i\gamma}\nabla_{\gamma}(\rho*u_\alpha * u_\beta)                    T cDivRhoUU[L::d][L::d]; //first step towards QcdivRhoUU                    for (int iAlpha = 0; iAlpha < L::d; ++iAlpha)                    {                        for (int iBeta = 0; iBeta < L::d; ++iBeta)                        {                            cDivRhoUU[iAlpha][iBeta] = L::c[iPop][x] *                                            (dx_rho*u[iAlpha]*u[iBeta] +                                             dx_U[iAlpha]*rho*u[iBeta] +                                             dx_U[iBeta]*rho*u[iAlpha])                                                       + L::c[iPop][y] *                                            (dy_rho*u[iAlpha]*u[iBeta] +                                             dy_U[iAlpha]*rho*u[iBeta] +                                             dy_U[iBeta]*rho*u[iAlpha]);                        }                    }                    //Finally we can compute                    // Q_{i\alpha\beta}c_{i\gamma}\nabla_{\gamma}(\rho*u_\alpha * u_\beta)                    // and Q_{i\alpha\beta}\rho\nabla_{\alpha}u_\beta                    T qCdivRhoUU = T();                    T qRhoGradU = T();                    for (int iAlpha = 0; iAlpha < L::d; ++iAlpha) {                        for (int iBeta = 0; iBeta < L::d; ++iBeta) {                            int ci_ci = L::c[iPop][iAlpha]*L::c[iPop][iBeta];                            qCdivRhoUU  += ci_ci * cDivRhoUU[iAlpha][iBeta];                            qRhoGradU   += ci_ci * rhoGradU[iAlpha][iBeta];                            if (iAlpha == iBeta) {                                qCdivRhoUU -= cDivRhoUU[iAlpha][iBeta]/L::invCs2;                                qRhoGradU  -= rhoGradU[iAlpha][iBeta]/L::invCs2;                            }                        }                    }                    // we then can reconstruct the value of the populations                    // according to the complete C-E expansion term                    cell[iPop] = lbH::equilibrium(iPop,rho,u,uSqr)                                 - L::t[iPop] * L::invCs2 / omega                                     * (qRhoGradU - cGradRhoUU + 0.5*L::invCs2*qCdivRhoUU);                }            }        }    }}template<typename T, template<typename U> class Lattice, int direction, int orientation>void ExtendedStraightFdBoundaryPostProcessor2D<T,Lattice,direction,orientation>::    process(BlockLattice2D<T,Lattice>& blockLattice){    processSubDomain(blockLattice, x0, x1, y0, y1);}template<typename T, template<typename U> class Lattice, int direction, int orientation>template<int deriveDirection>void ExtendedStraightFdBoundaryPostProcessor2D<T,Lattice,direction,orientation>::    interpolateGradients(BlockLattice2D<T,Lattice> const& blockLattice,                         T velDeriv[Lattice<T>::d], int iX, int iY) const{    fd::DirectedGradients2D<T, Lattice, direction, orientation, direction==deriveDirection>::        interpolateVector(velDeriv, blockLattice, iX, iY);}template<typename T, template<typename U> class Lattice, int direction, int orientation>template<int deriveDirection>void ExtendedStraightFdBoundaryPostProcessor2D<T,Lattice,direction,orientation>::    interpolateGradients(BlockLattice2D<T,Lattice> const& blockLattice, T& rhoDeriv, int iX, int iY) const{    fd::DirectedGradients2D<T, Lattice, direction, orientation, direction==deriveDirection>::        interpolateScalar(rhoDeriv, blockLattice, iX, iY);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -