📄 inamuronewtonraphsondynamics.hh
字号:
/* This file is part of the OpenLB library * * Copyright (C) 2006, Orestis Malaspinas and Jonas Latt * Address: Rue General Dufour 24, 1211 Geneva 4, Switzerland * E-mail: jonas.latt@gmail.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA.*/#ifndef INAMURO_NEWTON_RAPHSON_DYNAMICS_HH#define INAMURO_NEWTON_RAPHSON_DYNAMICS_HH#include "inamuroNewtonRaphsonDynamics.h"#include "core/latticeDescriptors.h"#include "core/util.h"#include "core/lbHelpers.h"#include <cmath>namespace olb {using namespace descriptors;template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::InamuroNewtonRaphsonDynamics ( T omega_, Momenta<T,Lattice>& momenta_ ) : BasicDynamics<T,Lattice>(momenta_), boundaryDynamics(omega_, momenta_){ xi[0] = (T)1; for (int iDim = 1; iDim < Lattice<T>::d; ++iDim) { xi[iDim] = T(); }}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>* InamuroNewtonRaphsonDynamics<T,Lattice, Dynamics, direction, orientation>::clone() const{ return new InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>(*this);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T InamuroNewtonRaphsonDynamics<T,Lattice, Dynamics, direction, orientation>:: computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{ return boundaryDynamics.computeEquilibrium(iPop, rho, u, uSqr);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::collide ( Cell<T,Lattice>& cell, LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; T rho, u[L::d]; this->momenta.computeRhoU(cell,rho,u); std::vector<int> missingIndexes = util::subIndexOutgoing<L,direction,orientation>(); std::vector<int> knownIndexes; bool test[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { test[iPop] = true; } for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) { test[missingIndexes[iPop]] = false; } for (int iPop = 0; iPop < L::q; ++iPop) { if (test[iPop]) { knownIndexes.push_back(iPop); } } T approxMomentum[L::d]; computeApproxMomentum(approxMomentum,cell,rho,u,xi,knownIndexes,missingIndexes); T error = computeError(rho, u,approxMomentum); int counter = 0; while (error > 1.0e-15) { ++counter; T gradError[L::d], gradGradError[L::d][L::d]; computeGradGradError(gradGradError,gradError,rho,u,xi,approxMomentum,missingIndexes); bool everythingWentFine = newtonRaphson(xi,gradError,gradGradError); if ((counter > 100000) || everythingWentFine == false) { // if we need more that 100000 iterations or // if we have a problem with the inversion of the // jacobian matrix, we stop the program and // print this error message on the screen. std::cout << "Failed to converge....\n"; std::cout << "Error = " << error << "\n"; std::cout << "u = (" << rho*u[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << rho*u[iD]; } std::cout << ")\n"; std::cout << "uApprox = (" << approxMomentum[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << approxMomentum[iD]; } std::cout << ")\n"; std::cout << "xi = (" << xi[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << xi[iD]; } std::cout << ")\n"; exit(1); } computeApproxMomentum(approxMomentum,cell,rho,u,xi,knownIndexes,missingIndexes); error = computeError(rho, u,approxMomentum); } T uCs[L::d]; int counterDim = 0; for (int iDim = 0; iDim < L::d; ++iDim) { if (direction == iDim) { ++counterDim; uCs[iDim] = u[iDim]; } else { uCs[iDim] = u[iDim] + xi[iDim+1-counterDim]; } } T uCsSqr = util::normSqr<T,L::d>(uCs); for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) { cell[missingIndexes[iPop]] = computeEquilibrium(missingIndexes[iPop],xi[0],uCs,uCsSqr); } boundaryDynamics.collide(cell, statistics);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::staticCollide ( Cell<T,Lattice>& cell, const T u[Lattice<T>::d], LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; T rho = this->momenta.computeRho(cell); std::vector<int> missingIndexes = util::subIndexOutgoing<L,direction,orientation>(); std::vector<int> knownIndexes; bool test[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { test[iPop] = true; } for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) { test[missingIndexes[iPop]] = false; } for (int iPop = 0; iPop < L::q; ++iPop) { if (test[iPop]) { knownIndexes.push_back(iPop); } } T approxMomentum[L::d]; computeApproxMomentum(approxMomentum,cell,rho,u,xi,knownIndexes,missingIndexes); T error = computeError(rho, u,approxMomentum); int counter = 0; while (error > 1.0e-15) { ++counter; T gradError[L::d], gradGradError[L::d][L::d]; computeGradGradError(gradGradError,gradError,rho,u,xi,approxMomentum,missingIndexes); bool everythingWentFine = newtonRaphson(xi,gradError,gradGradError); if ((counter > 100000) || everythingWentFine == false) { // if we need more that 100000 iterations or // if we have a problem with the inversion of the // jacobian matrix, we stop the program and // print this error message on the screen. std::cout << "Failed to converge....\n"; std::cout << "Error = " << error << "\n"; std::cout << "u = (" << rho*u[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << rho*u[iD]; } std::cout << ")\n"; std::cout << "uApprox = (" << approxMomentum[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << approxMomentum[iD]; } std::cout << ")\n"; std::cout << "xi = (" << xi[0]; for (int iD=1; iD<Lattice<T>::d; ++iD) { std::cout << ", " << xi[iD]; } std::cout << ")\n"; exit(1); } computeApproxMomentum(approxMomentum,cell,rho,u,xi,knownIndexes,missingIndexes); error = computeError(rho, u,approxMomentum); } T uCs[L::d]; int counterDim = 0; for (int iDim = 0; iDim < L::d; ++iDim) { if (direction == iDim) { ++counterDim; uCs[iDim] = u[iDim]; } else { uCs[iDim] = u[iDim] + xi[iDim+1-counterDim]; } } T uCsSqr = util::normSqr<T,L::d>(uCs); for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) { cell[missingIndexes[iPop]] = computeEquilibrium(missingIndexes[iPop],xi[0],uCs,uCsSqr); } boundaryDynamics.staticCollide(cell, u, statistics);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::getOmega() const { return boundaryDynamics.getOmega();}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::setOmega(T omega_){ boundaryDynamics.setOmega(omega_);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>T InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::getParameter(int whichParameter) const { return boundaryDynamics.getParameter(whichParameter);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>::setParameter(int whichParameter, T value){ boundaryDynamics.setParameter(whichParameter, value);}template<typename T, template<typename U> class Lattice, typename Dynamics, int direction, int orientation>void InamuroNewtonRaphsonDynamics<T,Lattice,Dynamics,direction,orientation>:: computeApproxMomentum(T approxMomentum[Lattice<T>::d],const Cell<T,Lattice> &cell, const T &rho, const T u[Lattice<T>::d], const T xi[Lattice<T>::d], const std::vector<int> knownIndexes,const std::vector<int> missingIndexes){ typedef Lattice<T> L; T csVel[L::d]; int counter = 0; for (int iDim = 0; iDim < L::d; ++iDim) { if (direction == iDim) { ++counter; csVel[iDim] = u[iDim]; } else { csVel[iDim] = u[iDim] + xi[iDim+1-counter]; } } T csVelSqr = util::normSqr<T,L::d>(csVel); for (int iDim = 0; iDim < L::d; ++iDim) { approxMomentum[iDim] = T(); for (unsigned iPop = 0; iPop < knownIndexes.size(); ++iPop)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -