📄 boundarypostprocessors3d.hh
字号:
T dA_uB_[3][3]; interpolateGradients<plane,0> ( blockLattice, dA_uB_[0], iX, iY, iZ ); interpolateGradients<direction1,normal1> ( blockLattice, dA_uB_[1], iX, iY, iZ ); interpolateGradients<direction2,normal2> ( blockLattice, dA_uB_[2], iX, iY, iZ ); T dA_uB[3][3]; for (int iBeta=0; iBeta<3; ++iBeta) { dA_uB[plane][iBeta] = dA_uB_[0][iBeta]; dA_uB[direction1][iBeta] = dA_uB_[1][iBeta]; dA_uB[direction2][iBeta] = dA_uB_[2][iBeta]; } T omega = dynamics -> getOmega(); T sToPi = - rho / Lattice<T>::invCs2 / omega; T pi[util::TensorVal<Lattice<T> >::n]; pi[xx] = (T)2 * dA_uB[0][0] * sToPi; pi[yy] = (T)2 * dA_uB[1][1] * sToPi; pi[zz] = (T)2 * dA_uB[2][2] * sToPi; pi[xy] = (dA_uB[0][1]+dA_uB[1][0]) * sToPi; pi[xz] = (dA_uB[0][2]+dA_uB[2][0]) * sToPi; pi[yz] = (dA_uB[1][2]+dA_uB[2][1]) * sToPi; // Computation of the particle distribution functions // according to the regularized formula T u[Lattice<T>::d]; cell.computeU(u); T uSqr = util::normSqr<T,Lattice<T>::d>(u); for (int iPop = 0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] = dynamics -> computeEquilibrium(iPop,rho,u,uSqr) + firstOrderLbHelpers<T,Lattice>::fromPiToFneq(iPop, pi); } } } } }}template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>void OuterVelocityEdgeProcessor3D<T,Lattice, plane,normal1,normal2>:: process(BlockLattice3D<T,Lattice>& blockLattice){ processSubDomain(blockLattice, x0, x1, y0, y1, z0, z1);}template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>T OuterVelocityEdgeProcessor3D<T,Lattice, plane,normal1,normal2>:: getNeighborRho(int x, int y, int z, int step1, int step2, BlockLattice3D<T,Lattice> const& blockLattice){ int coords[3] = {x, y, z}; coords[direction1] += -normal1*step1; coords[direction2] += -normal2*step2; return blockLattice.get(coords[0], coords[1], coords[2]).computeRho();}template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>template<int deriveDirection, int orientation>void OuterVelocityEdgeProcessor3D<T,Lattice, plane,normal1,normal2>:: interpolateGradients(BlockLattice3D<T,Lattice> const& blockLattice, T velDeriv[Lattice<T>::d], int iX, int iY, int iZ) const{ fd::DirectedGradients3D<T,Lattice,deriveDirection,orientation,deriveDirection,deriveDirection!=plane>:: interpolateVector(velDeriv, blockLattice, iX, iY, iZ);}//////// OuterVelocityEdgeProcessorGenerator3D ///////////////////////////////template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>OuterVelocityEdgeProcessorGenerator3D<T,Lattice, plane,normal1,normal2>:: OuterVelocityEdgeProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_) : PostProcessorGenerator3D<T,Lattice>(x0_, x1_, y0_, y1_, z0_, z1_){ }template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>PostProcessor3D<T,Lattice>* OuterVelocityEdgeProcessorGenerator3D<T,Lattice, plane,normal1,normal2>:: generate() const{ return new OuterVelocityEdgeProcessor3D < T,Lattice, plane,normal1,normal2 > ( this->x0, this->x1, this->y0, this->y1, this->z0, this->z1);}template<typename T, template<typename U> class Lattice, int plane, int normal1, int normal2>PostProcessorGenerator3D<T,Lattice>* OuterVelocityEdgeProcessorGenerator3D<T,Lattice, plane,normal1,normal2>::clone() const{ return new OuterVelocityEdgeProcessorGenerator3D<T,Lattice, plane,normal1,normal2 > (this->x0, this->x1, this->y0, this->y1, this->z0, this->z1);}/////////// OuterVelocityCornerProcessor3D /////////////////////////////////////template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>OuterVelocityCornerProcessor3D<T, Lattice, xNormal, yNormal, zNormal>:: OuterVelocityCornerProcessor3D ( int x_, int y_, int z_ ) : x(x_), y(y_), z(z_){ }template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>void OuterVelocityCornerProcessor3D<T, Lattice, xNormal, yNormal, zNormal>:: process(BlockLattice3D<T,Lattice>& blockLattice){ using namespace olb::util::tensorIndices3D; Cell<T,Lattice>& cell = blockLattice.get(x,y,z); Dynamics<T,Lattice>* dynamics = cell.getDynamics(); T rho100 = blockLattice.get(x - 1*xNormal, y - 0*yNormal, z - 0*zNormal).computeRho(); T rho010 = blockLattice.get(x - 0*xNormal, y - 1*yNormal, z - 0*zNormal).computeRho(); T rho001 = blockLattice.get(x - 0*xNormal, y - 0*yNormal, z - 1*zNormal).computeRho(); T rho200 = blockLattice.get(x - 2*xNormal, y - 0*yNormal, z - 0*zNormal).computeRho(); T rho020 = blockLattice.get(x - 0*xNormal, y - 2*yNormal, z - 0*zNormal).computeRho(); T rho002 = blockLattice.get(x - 0*xNormal, y - 0*yNormal, z - 2*zNormal).computeRho(); T rho = (T)4/(T)9 * (rho001 + rho010 + rho100) - (T)1/(T)9 * (rho002 + rho020 + rho200); T dx_u[Lattice<T>::d], dy_u[Lattice<T>::d], dz_u[Lattice<T>::d]; fd::DirectedGradients3D<T, Lattice, 0, xNormal, 0, true>::interpolateVector(dx_u, blockLattice, x,y,z); fd::DirectedGradients3D<T, Lattice, 1, yNormal, 0, true>::interpolateVector(dy_u, blockLattice, x,y,z); fd::DirectedGradients3D<T, Lattice, 2, zNormal, 0, true>::interpolateVector(dz_u, blockLattice, x,y,z); T dx_ux = dx_u[0]; T dy_ux = dy_u[0]; T dz_ux = dz_u[0]; T dx_uy = dx_u[1]; T dy_uy = dy_u[1]; T dz_uy = dz_u[1]; T dx_uz = dx_u[2]; T dy_uz = dy_u[2]; T dz_uz = dz_u[2]; T omega = dynamics -> getOmega(); T sToPi = - rho / Lattice<T>::invCs2 / omega; T pi[util::TensorVal<Lattice<T> >::n]; pi[xx] = (T)2 * dx_ux * sToPi; pi[yy] = (T)2 * dy_uy * sToPi; pi[zz] = (T)2 * dz_uz * sToPi; pi[xy] = (dx_uy + dy_ux) * sToPi; pi[xz] = (dx_uz + dz_ux) * sToPi; pi[yz] = (dy_uz + dz_uy) * sToPi; // Computation of the particle distribution functions // according to the regularized formula T u[Lattice<T>::d]; cell.computeU(u); T uSqr = util::normSqr<T,Lattice<T>::d>(u); for (int iPop = 0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] = dynamics -> computeEquilibrium(iPop,rho,u,uSqr) + firstOrderLbHelpers<T,Lattice>::fromPiToFneq(iPop, pi); }}template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>void OuterVelocityCornerProcessor3D<T, Lattice, xNormal, yNormal, zNormal>:: processSubDomain(BlockLattice3D<T,Lattice>& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_){ if (util::contained(x, y, z, x0_, x1_, y0_, y1_, z0_, z1_)) { process(blockLattice); }}//////// OuterVelocityCornerProcessorGenerator3D ///////////////////////////////template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>OuterVelocityCornerProcessorGenerator3D<T,Lattice, xNormal,yNormal,zNormal>:: OuterVelocityCornerProcessorGenerator3D(int x_, int y_, int z_) : PostProcessorGenerator3D<T,Lattice>(x_,x_, y_,y_, z_,z_){ }template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>PostProcessor3D<T,Lattice>* OuterVelocityCornerProcessorGenerator3D<T,Lattice, xNormal,yNormal,zNormal>:: generate() const{ return new OuterVelocityCornerProcessor3D<T,Lattice, xNormal,yNormal,zNormal> ( this->x0, this->y0, this->z0 );}template<typename T, template<typename U> class Lattice, int xNormal, int yNormal, int zNormal>PostProcessorGenerator3D<T,Lattice>* OuterVelocityCornerProcessorGenerator3D<T,Lattice, xNormal,yNormal,zNormal>::clone() const{ return new OuterVelocityCornerProcessorGenerator3D<T,Lattice, xNormal, yNormal, zNormal> (this->x0, this->y0, this->z0);}} // namespace olb#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -