📄 finitedifference2d.h
字号:
/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007 Jonas Latt * Address: Rue General Dufour 24, 1211 Geneva 4, Switzerland * E-mail: jonas.latt@gmail.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA.*/#ifndef FINITE_DIFFERENCE_2D_H#define FINITE_DIFFERENCE_2D_H#include "finiteDifference.h"namespace olb {namespace fd { template<typename T, template<typename U> class Lattice, int direction, int orientation, bool orthogonal> struct DirectedGradients2D { static void interpolateVector(T velDeriv[Lattice<T>::d], BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY); static void interpolateScalar(T& rhoDeriv, BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY); }; // Implementation for orthogonal==true; i.e. the derivative is along // the boundary normal. template<typename T, template<typename U> class Lattice, int direction, int orientation> struct DirectedGradients2D<T, Lattice, direction, orientation, true> { static void interpolateVector(T velDeriv[Lattice<T>::d], BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY) { using namespace fd; T u0[Lattice<T>::d], u1[Lattice<T>::d], u2[Lattice<T>::d]; blockLattice.get(iX,iY).computeU(u0); blockLattice.get ( iX+(direction==0 ? (-orientation):0), iY+(direction==1 ? (-orientation):0) ).computeU(u1); blockLattice.get ( iX+(direction==0 ? (-2*orientation):0), iY+(direction==1 ? (-2*orientation):0) ).computeU(u2); for (int iD=0; iD<Lattice<T>::d; ++iD) { velDeriv[iD] = -orientation * boundaryGradient(u0[iD], u1[iD], u2[iD]); } } static void interpolateScalar(T& rhoDeriv, BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY) { using namespace fd; T rho0 = blockLattice.get(iX,iY).computeRho(); T rho1 = blockLattice.get ( iX+(direction==0 ? (-orientation):0), iY+(direction==1 ? (-orientation):0) ).computeRho(); T rho2 = blockLattice.get ( iX+(direction==0 ? (-2*orientation):0), iY+(direction==1 ? (-2*orientation):0) ).computeRho(); rhoDeriv = -orientation * boundaryGradient(rho0, rho1, rho2); } }; // Implementation for orthogonal==false; i.e. the derivative is aligned // with the boundary. template<typename T, template<typename U> class Lattice, int direction, int orientation> struct DirectedGradients2D<T, Lattice, direction, orientation, false> { static void interpolateVector(T velDeriv[Lattice<T>::d], BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY) { using namespace fd; T u_p1[Lattice<T>::d], u_m1[Lattice<T>::d]; int deriveDirection = 1-direction; blockLattice.get ( iX+(deriveDirection==0 ? 1:0), iY+(deriveDirection==1 ? 1:0) ).computeU(u_p1); blockLattice.get ( iX+(deriveDirection==0 ? (-1):0), iY+(deriveDirection==1 ? (-1):0) ).computeU(u_m1); for (int iD=0; iD<Lattice<T>::d; ++iD) { velDeriv[iD] = fd::centralGradient(u_p1[iD],u_m1[iD]); } } static void interpolateScalar(T& rhoDeriv, BlockLattice2D<T,Lattice> const& blockLattice, int iX, int iY) { using namespace fd; int deriveDirection = 1-direction; T rho_p1 = blockLattice.get ( iX+(deriveDirection==0 ? 1:0), iY+(deriveDirection==1 ? 1:0) ).computeRho(); T rho_m1 = blockLattice.get ( iX+(deriveDirection==0 ? (-1):0), iY+(deriveDirection==1 ? (-1):0) ).computeRho(); rhoDeriv = centralGradient(rho_p1, rho_m1); } };} // namespace fd} // namespace olb#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -