⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 entropicdynamics.hh

📁 open lattice boltzmann project www.openlb.org
💻 HH
字号:
/*  This file is part of the OpenLB library * *  Copyright (C) 2006, 2007 Orestis Malaspinas, Jonas Latt *  Address: EPFL-STI-LIN Station 9 1015 Lausanne *  E-mail: orestis.malaspinas@epfl.ch * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License *  as published by the Free Software Foundation; either version 2 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public  *  License along with this program; if not, write to the Free  *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *  Boston, MA  02110-1301, USA.*//** \file * A collection of dynamics classes (e.g. BGK) with which a Cell object * can be instantiated -- generic implementation. */#ifndef ENTROPIC_LB_DYNAMICS_HH#define ENTROPIC_LB_DYNAMICS_HH#include <algorithm>#include <limits>#include "core/lbHelpers.h"#include "entropicDynamics.h"#include "entropicLbHelpers.h"namespace olb {//==============================================================================///////////////////////////// Class EntropicDynamics /////////////////////////////////==============================================================================///** \param omega_ relaxation parameter, related to the dynamic viscosity *  \param momenta_ a Momenta object to know how to compute velocity momenta */template<typename T, template<typename U> class Lattice>EntropicDynamics<T,Lattice>::EntropicDynamics (        T omega_, Momenta<T,Lattice>& momenta_ )    : BasicDynamics<T,Lattice>(momenta_),      omega(omega_){ }template<typename T, template<typename U> class Lattice>EntropicDynamics<T,Lattice>* EntropicDynamics<T,Lattice>::clone() const {    return new EntropicDynamics<T,Lattice>(*this);}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{    return entropicLbHelpers<T,Lattice>::equilibrium(iPop,rho,u);}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::collide (        Cell<T,Lattice>& cell,        LatticeStatistics<T>& statistics ){    typedef Lattice<T> L;    typedef entropicLbHelpers<T,Lattice> eLbH;        T rho, u[Lattice<T>::d];    this->momenta.computeRhoU(cell, rho, u);    T uSqr = util::normSqr<T,L::d>(u);        T f[L::q], fEq[L::q], fNeq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fEq[iPop]  = eLbH::equilibrium(iPop,rho,u);        fNeq[iPop] = cell[iPop] - fEq[iPop];        f[iPop]    = cell[iPop] + L::t[iPop];        fEq[iPop] += L::t[iPop];    }    //==============================================================================//    //============= Evaluation of alpha using a Newton Raphson algorithm ===========//    //==============================================================================//    T alpha = 2.0;    bool converged = getAlpha(alpha,f,fNeq);    if (!converged)    {        std::cout << "Newton-Raphson failed to converge.\n";        exit(1);    }        OLB_ASSERT(converged,"Entropy growth failed to converge!");        T omegaTot = omega / 2.0 * alpha;    for (int iPop=0; iPop < Lattice<T>::q; ++iPop)     {        cell[iPop] *= (T)1-omegaTot;        cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]);    }        if (cell.takesStatistics()) {        statistics.gatherStats(rho, uSqr);    }}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::staticCollide (        Cell<T,Lattice>& cell,        const T u[Lattice<T>::d],        LatticeStatistics<T>& statistics ){    typedef Lattice<T> L;    typedef entropicLbHelpers<T,Lattice> eLbH;        T rho = this->momenta.computeRho(cell);    T uSqr = util::normSqr<T,L::d>(u);        T f[L::q], fEq[L::q], fNeq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fEq[iPop]  = eLbH::equilibrium(iPop,rho,u);        fNeq[iPop] = cell[iPop] - fEq[iPop];        f[iPop]    = cell[iPop] + L::t[iPop];        fEq[iPop] += L::t[iPop];    }    //==============================================================================//    //============= Evaluation of alpha using a Newton Raphson algorithm ===========//    //==============================================================================//    T alpha = 2.0;    bool converged = getAlpha(alpha,f,fNeq);    if (!converged)    {        std::cout << "Newton-Raphson failed to converge.\n";        exit(1);    }        OLB_ASSERT(converged,"Entropy growth failed to converge!");        T omegaTot = omega / 2.0 * alpha;    for (int iPop=0; iPop < Lattice<T>::q; ++iPop)     {        cell[iPop] *= (T)1-omegaTot;        cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]);    }        if (cell.takesStatistics()) {        statistics.gatherStats(rho, uSqr);    }}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::getOmega() const {    return omega;}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::setOmega(T omega_) {    omega = omega_;}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropy(const T f[]){    typedef Lattice<T> L;    T entropy = T();    for (int iPop = 0; iPop < L::q; ++iPop)    {        OLB_ASSERT(f[iPop] > T(), "f[iPop] <= 0");        entropy += f[iPop]*log(f[iPop]/L::t[iPop]);    }    return entropy;}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha){    typedef Lattice<T> L;        T fAlphaFneq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fAlphaFneq[iPop] = f[iPop] - alpha*fNeq[iPop];    }    return computeEntropy(f) - computeEntropy(fAlphaFneq);}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha){    typedef Lattice<T> L;        T entropyGrowthDerivative = T();    for (int iPop = 0; iPop < L::q; ++iPop)    {        T tmp = f[iPop] - alpha*fNeq[iPop];        OLB_ASSERT(tmp > T(), "f[iPop] - alpha*fNeq[iPop] <= 0");        entropyGrowthDerivative += fNeq[iPop]*(log(tmp/L::t[iPop]));    }    return entropyGrowthDerivative;}template<typename T, template<typename U> class Lattice>bool EntropicDynamics<T,Lattice>::getAlpha(T &alpha, const T f[], const T fNeq[]){    const T epsilon = std::numeric_limits<T>::epsilon();    T alphaGuess = T();    const T var = 100.0;    const T errorMax = epsilon*var;    T error = 1.0;    int count = 0;    for (count = 0; count < 10000; ++count)    {        T entGrowth = computeEntropyGrowth(f,fNeq,alpha);        T entGrowthDerivative = computeEntropyGrowthDerivative(f,fNeq,alpha);        if ((error < errorMax) || (fabs(entGrowth) < var*epsilon))        {            return true;        }        alphaGuess = alpha - entGrowth /                entGrowthDerivative;        error = fabs(alpha-alphaGuess);        alpha = alphaGuess;    }    return false;}//====================================================================////////////////////// Class ForcedEntropicDynamics ////////////////////////====================================================================///** \param omega_ relaxation parameter, related to the dynamic viscosity */template<typename T, template<typename U> class Lattice>ForcedEntropicDynamics<T,Lattice>::ForcedEntropicDynamics (        T omega_, Momenta<T,Lattice>& momenta_ )    : BasicDynamics<T,Lattice>(momenta_),      omega(omega_){ }template<typename T, template<typename U> class Lattice>ForcedEntropicDynamics<T,Lattice>* ForcedEntropicDynamics<T,Lattice>::clone() const {    return new ForcedEntropicDynamics<T,Lattice>(*this);}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{    return entropicLbHelpers<T,Lattice>::equilibrium(iPop,rho,u);}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::collide (        Cell<T,Lattice>& cell,        LatticeStatistics<T>& statistics ){    typedef Lattice<T> L;    typedef entropicLbHelpers<T,Lattice> eLbH;    T rho, u[Lattice<T>::d];    this->momenta.computeRhoU(cell, rho, u);    T uSqr = util::normSqr<T,L::d>(u);    T f[L::q], fEq[L::q], fNeq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fEq[iPop]  = eLbH::equilibrium(iPop,rho,u);        fNeq[iPop] = cell[iPop] - fEq[iPop];        f[iPop]    = cell[iPop] + L::t[iPop];        fEq[iPop] += L::t[iPop];    }    //==============================================================================//    //============= Evaluation of alpha using a Newton Raphson algorithm ===========//    //==============================================================================//    T alpha = 2.0;    bool converged = getAlpha(alpha,f,fNeq);    if (!converged)    {        std::cout << "Newton-Raphson failed to converge.\n";        exit(1);    }    OLB_ASSERT(converged,"Entropy growth failed to converge!");        T* force = cell.getExternal(forceBeginsAt);    for (int iDim=0; iDim<Lattice<T>::d; ++iDim)    {        u[iDim] += force[iDim] / (T)2.;    }    uSqr = util::normSqr<T,L::d>(u);    T omegaTot = omega / 2.0 * alpha;    for (int iPop=0; iPop < Lattice<T>::q; ++iPop)     {        cell[iPop] *= (T)1-omegaTot;        cell[iPop] += omegaTot * eLbH::equilibrium(iPop,rho,u);    }    lbHelpers<T,Lattice>::addExternalForce(cell, u, omegaTot);        if (cell.takesStatistics())    {        statistics.gatherStats(rho, uSqr);    }}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::staticCollide (        Cell<T,Lattice>& cell,        const T u[Lattice<T>::d],        LatticeStatistics<T>& statistics ){    typedef Lattice<T> L;    typedef entropicLbHelpers<T,Lattice> eLbH;        T rho;    rho = this->momenta.computeRho(cell);    T uSqr = util::normSqr<T,L::d>(u);        T f[L::q], fEq[L::q], fNeq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fEq[iPop]  = eLbH::equilibrium(iPop,rho,u);        fNeq[iPop] = cell[iPop] - fEq[iPop];        f[iPop]    = cell[iPop] + L::t[iPop];        fEq[iPop] += L::t[iPop];    }    //==============================================================================//    //============= Evaluation of alpha using a Newton Raphson algorithm ===========//    //==============================================================================//    T alpha = 2.0;    bool converged = getAlpha(alpha,f,fNeq);    if (!converged)    {        std::cout << "Newton-Raphson failed to converge.\n";        exit(1);    }        OLB_ASSERT(converged,"Entropy growth failed to converge!");        T omegaTot = omega / 2.0 * alpha;    for (int iPop=0; iPop < Lattice<T>::q; ++iPop)     {        cell[iPop] *= (T)1-omegaTot;        cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]);    }    lbHelpers<T,Lattice>::addExternalForce(cell, u, omegaTot);        if (cell.takesStatistics()) {        statistics.gatherStats(rho, uSqr);    }}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::getOmega() const {    return omega;}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::setOmega(T omega_) {    omega = omega_;}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropy(const T f[]){    typedef Lattice<T> L;    T entropy = T();    for (int iPop = 0; iPop < L::q; ++iPop)    {        OLB_ASSERT(f[iPop] > T(), "f[iPop] <= 0");        entropy += f[iPop]*log(f[iPop]/L::t[iPop]);    }    return entropy;}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha){    typedef Lattice<T> L;        T fAlphaFneq[L::q];    for (int iPop = 0; iPop < L::q; ++iPop)    {        fAlphaFneq[iPop] = f[iPop] - alpha*fNeq[iPop];    }    return computeEntropy(f) - computeEntropy(fAlphaFneq);}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha){    typedef Lattice<T> L;        T entropyGrowthDerivative = T();    for (int iPop = 0; iPop < L::q; ++iPop)    {        T tmp = f[iPop] - alpha*fNeq[iPop];        OLB_ASSERT(tmp > T(), "f[iPop] - alpha*fNeq[iPop] <= 0");        entropyGrowthDerivative += fNeq[iPop]*log(tmp/L::t[iPop]);    }    return entropyGrowthDerivative;}template<typename T, template<typename U> class Lattice>bool ForcedEntropicDynamics<T,Lattice>::getAlpha(T &alpha, const T f[], const T fNeq[]){    const T epsilon = std::numeric_limits<T>::epsilon();    T alphaGuess = T();    const T var = 100.0;    const T errorMax = epsilon*var;    T error = 1.0;    int count = 0;    for (count = 0; count < 10000; ++count)    {        T entGrowth = computeEntropyGrowth(f,fNeq,alpha);        T entGrowthDerivative = computeEntropyGrowthDerivative(f,fNeq,alpha);        if ((error < errorMax) || (fabs(entGrowth) < var*epsilon))        {            return true;        }        alphaGuess = alpha - entGrowth /                entGrowthDerivative;        error = fabs(alpha-alphaGuess);        alpha = alphaGuess;    }    return false;}}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -