📄 entropicdynamics.hh
字号:
/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007 Orestis Malaspinas, Jonas Latt * Address: EPFL-STI-LIN Station 9 1015 Lausanne * E-mail: orestis.malaspinas@epfl.ch * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA.*//** \file * A collection of dynamics classes (e.g. BGK) with which a Cell object * can be instantiated -- generic implementation. */#ifndef ENTROPIC_LB_DYNAMICS_HH#define ENTROPIC_LB_DYNAMICS_HH#include <algorithm>#include <limits>#include "core/lbHelpers.h"#include "entropicDynamics.h"#include "entropicLbHelpers.h"namespace olb {//==============================================================================///////////////////////////// Class EntropicDynamics /////////////////////////////////==============================================================================///** \param omega_ relaxation parameter, related to the dynamic viscosity * \param momenta_ a Momenta object to know how to compute velocity momenta */template<typename T, template<typename U> class Lattice>EntropicDynamics<T,Lattice>::EntropicDynamics ( T omega_, Momenta<T,Lattice>& momenta_ ) : BasicDynamics<T,Lattice>(momenta_), omega(omega_){ }template<typename T, template<typename U> class Lattice>EntropicDynamics<T,Lattice>* EntropicDynamics<T,Lattice>::clone() const { return new EntropicDynamics<T,Lattice>(*this);}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{ return entropicLbHelpers<T,Lattice>::equilibrium(iPop,rho,u);}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::collide ( Cell<T,Lattice>& cell, LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; typedef entropicLbHelpers<T,Lattice> eLbH; T rho, u[Lattice<T>::d]; this->momenta.computeRhoU(cell, rho, u); T uSqr = util::normSqr<T,L::d>(u); T f[L::q], fEq[L::q], fNeq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fEq[iPop] = eLbH::equilibrium(iPop,rho,u); fNeq[iPop] = cell[iPop] - fEq[iPop]; f[iPop] = cell[iPop] + L::t[iPop]; fEq[iPop] += L::t[iPop]; } //==============================================================================// //============= Evaluation of alpha using a Newton Raphson algorithm ===========// //==============================================================================// T alpha = 2.0; bool converged = getAlpha(alpha,f,fNeq); if (!converged) { std::cout << "Newton-Raphson failed to converge.\n"; exit(1); } OLB_ASSERT(converged,"Entropy growth failed to converge!"); T omegaTot = omega / 2.0 * alpha; for (int iPop=0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] *= (T)1-omegaTot; cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]); } if (cell.takesStatistics()) { statistics.gatherStats(rho, uSqr); }}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::staticCollide ( Cell<T,Lattice>& cell, const T u[Lattice<T>::d], LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; typedef entropicLbHelpers<T,Lattice> eLbH; T rho = this->momenta.computeRho(cell); T uSqr = util::normSqr<T,L::d>(u); T f[L::q], fEq[L::q], fNeq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fEq[iPop] = eLbH::equilibrium(iPop,rho,u); fNeq[iPop] = cell[iPop] - fEq[iPop]; f[iPop] = cell[iPop] + L::t[iPop]; fEq[iPop] += L::t[iPop]; } //==============================================================================// //============= Evaluation of alpha using a Newton Raphson algorithm ===========// //==============================================================================// T alpha = 2.0; bool converged = getAlpha(alpha,f,fNeq); if (!converged) { std::cout << "Newton-Raphson failed to converge.\n"; exit(1); } OLB_ASSERT(converged,"Entropy growth failed to converge!"); T omegaTot = omega / 2.0 * alpha; for (int iPop=0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] *= (T)1-omegaTot; cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]); } if (cell.takesStatistics()) { statistics.gatherStats(rho, uSqr); }}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::getOmega() const { return omega;}template<typename T, template<typename U> class Lattice>void EntropicDynamics<T,Lattice>::setOmega(T omega_) { omega = omega_;}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropy(const T f[]){ typedef Lattice<T> L; T entropy = T(); for (int iPop = 0; iPop < L::q; ++iPop) { OLB_ASSERT(f[iPop] > T(), "f[iPop] <= 0"); entropy += f[iPop]*log(f[iPop]/L::t[iPop]); } return entropy;}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha){ typedef Lattice<T> L; T fAlphaFneq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fAlphaFneq[iPop] = f[iPop] - alpha*fNeq[iPop]; } return computeEntropy(f) - computeEntropy(fAlphaFneq);}template<typename T, template<typename U> class Lattice>T EntropicDynamics<T,Lattice>::computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha){ typedef Lattice<T> L; T entropyGrowthDerivative = T(); for (int iPop = 0; iPop < L::q; ++iPop) { T tmp = f[iPop] - alpha*fNeq[iPop]; OLB_ASSERT(tmp > T(), "f[iPop] - alpha*fNeq[iPop] <= 0"); entropyGrowthDerivative += fNeq[iPop]*(log(tmp/L::t[iPop])); } return entropyGrowthDerivative;}template<typename T, template<typename U> class Lattice>bool EntropicDynamics<T,Lattice>::getAlpha(T &alpha, const T f[], const T fNeq[]){ const T epsilon = std::numeric_limits<T>::epsilon(); T alphaGuess = T(); const T var = 100.0; const T errorMax = epsilon*var; T error = 1.0; int count = 0; for (count = 0; count < 10000; ++count) { T entGrowth = computeEntropyGrowth(f,fNeq,alpha); T entGrowthDerivative = computeEntropyGrowthDerivative(f,fNeq,alpha); if ((error < errorMax) || (fabs(entGrowth) < var*epsilon)) { return true; } alphaGuess = alpha - entGrowth / entGrowthDerivative; error = fabs(alpha-alphaGuess); alpha = alphaGuess; } return false;}//====================================================================////////////////////// Class ForcedEntropicDynamics ////////////////////////====================================================================///** \param omega_ relaxation parameter, related to the dynamic viscosity */template<typename T, template<typename U> class Lattice>ForcedEntropicDynamics<T,Lattice>::ForcedEntropicDynamics ( T omega_, Momenta<T,Lattice>& momenta_ ) : BasicDynamics<T,Lattice>(momenta_), omega(omega_){ }template<typename T, template<typename U> class Lattice>ForcedEntropicDynamics<T,Lattice>* ForcedEntropicDynamics<T,Lattice>::clone() const { return new ForcedEntropicDynamics<T,Lattice>(*this);}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEquilibrium(int iPop, T rho, const T u[Lattice<T>::d], T uSqr) const{ return entropicLbHelpers<T,Lattice>::equilibrium(iPop,rho,u);}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::collide ( Cell<T,Lattice>& cell, LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; typedef entropicLbHelpers<T,Lattice> eLbH; T rho, u[Lattice<T>::d]; this->momenta.computeRhoU(cell, rho, u); T uSqr = util::normSqr<T,L::d>(u); T f[L::q], fEq[L::q], fNeq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fEq[iPop] = eLbH::equilibrium(iPop,rho,u); fNeq[iPop] = cell[iPop] - fEq[iPop]; f[iPop] = cell[iPop] + L::t[iPop]; fEq[iPop] += L::t[iPop]; } //==============================================================================// //============= Evaluation of alpha using a Newton Raphson algorithm ===========// //==============================================================================// T alpha = 2.0; bool converged = getAlpha(alpha,f,fNeq); if (!converged) { std::cout << "Newton-Raphson failed to converge.\n"; exit(1); } OLB_ASSERT(converged,"Entropy growth failed to converge!"); T* force = cell.getExternal(forceBeginsAt); for (int iDim=0; iDim<Lattice<T>::d; ++iDim) { u[iDim] += force[iDim] / (T)2.; } uSqr = util::normSqr<T,L::d>(u); T omegaTot = omega / 2.0 * alpha; for (int iPop=0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] *= (T)1-omegaTot; cell[iPop] += omegaTot * eLbH::equilibrium(iPop,rho,u); } lbHelpers<T,Lattice>::addExternalForce(cell, u, omegaTot); if (cell.takesStatistics()) { statistics.gatherStats(rho, uSqr); }}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::staticCollide ( Cell<T,Lattice>& cell, const T u[Lattice<T>::d], LatticeStatistics<T>& statistics ){ typedef Lattice<T> L; typedef entropicLbHelpers<T,Lattice> eLbH; T rho; rho = this->momenta.computeRho(cell); T uSqr = util::normSqr<T,L::d>(u); T f[L::q], fEq[L::q], fNeq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fEq[iPop] = eLbH::equilibrium(iPop,rho,u); fNeq[iPop] = cell[iPop] - fEq[iPop]; f[iPop] = cell[iPop] + L::t[iPop]; fEq[iPop] += L::t[iPop]; } //==============================================================================// //============= Evaluation of alpha using a Newton Raphson algorithm ===========// //==============================================================================// T alpha = 2.0; bool converged = getAlpha(alpha,f,fNeq); if (!converged) { std::cout << "Newton-Raphson failed to converge.\n"; exit(1); } OLB_ASSERT(converged,"Entropy growth failed to converge!"); T omegaTot = omega / 2.0 * alpha; for (int iPop=0; iPop < Lattice<T>::q; ++iPop) { cell[iPop] *= (T)1-omegaTot; cell[iPop] += omegaTot * (fEq[iPop]-L::t[iPop]); } lbHelpers<T,Lattice>::addExternalForce(cell, u, omegaTot); if (cell.takesStatistics()) { statistics.gatherStats(rho, uSqr); }}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::getOmega() const { return omega;}template<typename T, template<typename U> class Lattice>void ForcedEntropicDynamics<T,Lattice>::setOmega(T omega_) { omega = omega_;}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropy(const T f[]){ typedef Lattice<T> L; T entropy = T(); for (int iPop = 0; iPop < L::q; ++iPop) { OLB_ASSERT(f[iPop] > T(), "f[iPop] <= 0"); entropy += f[iPop]*log(f[iPop]/L::t[iPop]); } return entropy;}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha){ typedef Lattice<T> L; T fAlphaFneq[L::q]; for (int iPop = 0; iPop < L::q; ++iPop) { fAlphaFneq[iPop] = f[iPop] - alpha*fNeq[iPop]; } return computeEntropy(f) - computeEntropy(fAlphaFneq);}template<typename T, template<typename U> class Lattice>T ForcedEntropicDynamics<T,Lattice>::computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha){ typedef Lattice<T> L; T entropyGrowthDerivative = T(); for (int iPop = 0; iPop < L::q; ++iPop) { T tmp = f[iPop] - alpha*fNeq[iPop]; OLB_ASSERT(tmp > T(), "f[iPop] - alpha*fNeq[iPop] <= 0"); entropyGrowthDerivative += fNeq[iPop]*log(tmp/L::t[iPop]); } return entropyGrowthDerivative;}template<typename T, template<typename U> class Lattice>bool ForcedEntropicDynamics<T,Lattice>::getAlpha(T &alpha, const T f[], const T fNeq[]){ const T epsilon = std::numeric_limits<T>::epsilon(); T alphaGuess = T(); const T var = 100.0; const T errorMax = epsilon*var; T error = 1.0; int count = 0; for (count = 0; count < 10000; ++count) { T entGrowth = computeEntropyGrowth(f,fNeq,alpha); T entGrowthDerivative = computeEntropyGrowthDerivative(f,fNeq,alpha); if ((error < errorMax) || (fabs(entGrowth) < var*epsilon)) { return true; } alphaGuess = alpha - entGrowth / entGrowthDerivative; error = fabs(alpha-alphaGuess); alpha = alphaGuess; } return false;}}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -