⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 emhht.m

📁 用来实现隐马尔科夫树的分类
💻 M
字号:
function [ESN,PSN,MUN,SIN]=emhht(w,ES,PS,MU,SI,zm)%function [ESN,PSN,MUN,SIN]=emhht(w,ES,PS,MU,SI,zm)% updates HH subband of HMT model once%% Author: H. Choi% Last update : 12/14/1998%% the data structure of 2-D DWT follows the format used% in the Rice wavelelet matlab toolbox (see README)%% internal variables:% M : no. of mixture densities% P : size of image (PxP pixels)% level : no. of levels of HMT%% Input : % w : data PxP matrix (wavelet transform of an image)   % ES : state transition matrix (MxMxPxP)% PS : state probability matrix (MxPxP)% MU : mean matrix (MxPxP)% SI : variance matrix (MxPxP)% zm : type of density functions%  zm = 1 : zero mean (do not update MU)%  zm = 0 : nonzero mean (update MU)%% Output:% Updated ES PS MU SI in ESN PSN MUN SINM=size(ES,1);P=size(w,1);level=log2(P);BE=zeros(M,P,P);BEP=zeros(M,P,P);BER=zeros(M,P,P); AL=zeros(M,P,P);P1=zeros(M,P,P);P2=zeros(M,M,P,P);%UP stepwtmp = repmat(w,[1 1 M]);wtmp = shiftdim(wtmp,2);si=2^(level-1)+1; ei=P; sj=2^(level-1)+1; ej=P;gtmp = gauss(wtmp,MU,SI);scale = repmat(mean(gtmp,1),[M 1 1]);BE(:,si:ei,sj:ej) = gtmp(:,si:ei,sj:ej)./scale(:,si:ei,sj:ej);%clear MUtmp SItmp;for k=level:-1:2 J=2^(k-1);J2=J*J; si = J+1; ei = 2*J; sj = J+1; ej = 2*J; EStmp = reshape(ES(:,:,si:ei,sj:ej),M,M*J2); if M == 2  %%%%%% For M=2 the following is faster  BEtmp = zeros(M,M*J2);  BEtmp(:,1:M:(M*J2))=reshape(BE(:,si:ei,sj:ej),M,J2);  BEtmp(:,2:M:(M*J2))=BEtmp(:,1:M:(M*J2));  else  % For general M (not equal to 2) use the following  %  BEtmp = zeros(M,M*4^(k-1));  for m=1:M   BEtmp(:,m:M:(M*4^(k-1)))=reshape(BE(:,si:ei,sj:ej,:),M,4^(k-1));  end; end; BEtmp = reshape(EStmp.*BEtmp,[M M J J]); BEP(:,si:ei,sj:ej) = squeeze(sum(BEtmp,1));  sni = J/2+1; eni = si-1; snj = J/2+1; enj = sj-1;%construct betachild matrix BCtmp = BEP(:,si:2:ei,sj:2:ej); BCtmp = BCtmp.*BEP(:,si+1:2:ei,sj:2:ej); BCtmp = BCtmp.*BEP(:,si:2:ei,sj+1:2:ej); BCtmp = BCtmp.*BEP(:,si+1:2:ei,sj+1:2:ej);  scaletmp = repmat(mean(BCtmp,1),[M 1 1]); scale(:,sni:eni,snj:enj) = scale(:,sni:eni,snj:enj).*scaletmp; BE(:,sni:eni,snj:enj)=gtmp(:,sni:eni,snj:enj)./scale(:,sni:eni,snj:enj).*BCtmp;%construct BE(:,pai(i),paj(j),dindex) matrix Btmp=zeros(M,J,J); Btmp(:,1:2:J,1:2:J)=BE(:,sni:eni,snj:enj); Btmp(:,2:2:J,1:2:J)=BE(:,sni:eni,snj:enj); Btmp(:,1:2:J,2:2:J)=BE(:,sni:eni,snj:enj); Btmp(:,2:2:J,2:2:J)=BE(:,sni:eni,snj:enj); BER(:,si:ei,sj:ej)=Btmp./BEP(:,si:ei,sj:ej);end;clear EStmp BEtmp BCtmp Btmp;%DOWN step %initialize AL(:,2,2) = PS(:,2,2); for k=2:level  J = 2^(k-1); J2=J*J;  si=J+1; ei=2*J; sj=J+1; ej=2*J;  sni = J/2+1; eni = si-1; snj = J/2+1; enj = sj-1;  Atmp=zeros(M,J,J);  Atmp(:,1:2:J,1:2:J)=AL(:,sni:eni,snj:enj);  Atmp(:,2:2:J,1:2:J)=AL(:,sni:eni,snj:enj);  Atmp(:,1:2:J,2:2:J)=AL(:,sni:eni,snj:enj);  Atmp(:,2:2:J,2:2:J)=AL(:,sni:eni,snj:enj);  Atmp = repmat(reshape(Atmp.*BER(:,si:ei,sj:ej),1,M*J2),[M 1]);  EStmp = reshape(ES(:,:,si:ei,sj:ej),M,M*J2);  ALtmp = reshape(EStmp.*Atmp,[M M J J]);  AL(:,si:ei,sj:ej) = squeeze(sum(ALtmp,2)); end; clear Atmp EStmp ALtmp;%compute probabilitiesfor k=2:levelJ=2^(k-1); J2=J*J; si=J+1; ei=2*J; sj=J+1; ej=2*J; sni = J/2+1; eni = si-1; snj = J/2+1; enj = sj-1; temp = repmat(sum(AL(:,si:ei,sj:ej).*BE(:,si:ei,sj:ej), 1),[M 1]); P1(:,si:ei,sj:ej) = AL(:,si:ei,sj:ej).*BE(:,si:ei,sj:ej)./temp;   %compute P2 if M == 2   % For M=2 the following may be faster  BEtmp = zeros(M,M*J2);  BEtmp(:,1:M:(M*J2))=reshape(BE(:,si:ei,sj:ej),M,J2);  BEtmp(:,2:M:(M*J2))=BEtmp(:,1:M:(M*J2)); else  % For general M (not equal to 2) use the following   BEtmp = zeros(M,M*J2);  for m=1:M   BEtmp(:,m:M:(M*J2))=reshape(BE(:,si:ei,sj:ej,:),M,J2);  end; end; BEtmp = reshape(BEtmp,[M M J J]); EStmp = ES(:,:,si:ei,sj:ej); Atmp=zeros(M,J,J); Atmp(:,1:2:J,1:2:J)=AL(:,sni:eni,snj:enj); Atmp(:,2:2:J,1:2:J)=AL(:,sni:eni,snj:enj); Atmp(:,1:2:J,2:2:J)=AL(:,sni:eni,snj:enj); Atmp(:,2:2:J,2:2:J)=AL(:,sni:eni,snj:enj); Atmp = repmat(reshape(Atmp,1,M*J2),[M 1]); Atmp = reshape(Atmp,[M M J J]); BERtmp = repmat(reshape(BER(:,si:ei,sj:ej),1,M*J2),[M 1]); BERtmp = reshape(BERtmp,[M M J J]); temp = repmat(reshape(temp,1,M*J2),[M 1]); temp = reshape(temp, [M M J J]); P2(:,:,si:ei,sj:ej)=BEtmp.*EStmp.*Atmp.*BERtmp./temp;end;P1(:,2,2)=AL(:,2,2).*BE(:,2,2)./repmat(sum(AL(:,2,2).*BE(:,2,2),1),[M 1 1]);clear temp BEtmp EStmp Atmp BERtmp;%M stepPS(:,2,2)=P1(:,2,2);for k=2:level J=2^(k-1); J2=J*J; si=J+1; ei=2*J; sj=J+1; ej=2*J; sni = J/2+1; eni = si-1; snj = J/2+1; enj = sj-1; pstmp = sum(sum(P1(:,si:ei,sj:ej),3),2)/J2; pstmp = pstmp.*(pstmp>1e-4)+1e-4*(pstmp<=1e-4); PS(:,si:ei,sj:ej) = repmat(pstmp,[1 J J]); if zm == 0  % do not update MU if zero mean densities  mutmp = sum(sum(wtmp(:,si:ei,sj:ej).*P1(:,si:ei,sj:ej),3),2)/J2;  MU(:,si:ei,sj:ej) = repmat(mutmp,[1 J J])./PS(:,si:ei,sj:ej); end; sitmp = sum(sum((wtmp(:,si:ei,sj:ej)-MU(:,si:ei,sj:ej)).^2.*P1(:,si:ei,sj:ej),3),2)/J2; SI(:,si:ei,sj:ej) = repmat(sitmp,[1 J J])./PS(:,si:ei,sj:ej); estmp =sum(sum(P2(:,:,si:ei,sj:ej),4),3)/J2; ptmp = [PS(:,sni,snj)'; PS(:,sni,snj)']; ES(:,:,si:ei,sj:ej)= repmat(estmp,[1 1 J J])./repmat(ptmp,[1 1 J J]);end; %kESN=ES; PSN=PS; MUN=MU; SIN=SI;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -