📄 hmtmodel.m
字号:
function [ES, PS, MU, SI] = hmtmodel(N)% function [ES, PS, MU, SI] = hmtmodel(N)%% Creates a HMT model for real-world images with 2 mixuture densities.% The model is identically distributed in each scale.%% Usuage : [ES, PS, MU, SI] = hmtmodel(N)% n : size of image. The generated model is for nxn square image%% ES : Structure that holds the transistion matrices, dimension 2x2xNxN% PS : The mixture probabilities for the wavelet coefficients, dimension% 2XNxN% MU : The means of the mixture components, (all 0), dimension 2xNxN% SI : the variances of the mixture components, dimension 2xNxN%% Written by : Justin Romberg% Modified by Hyeokho Choi%% Last Revised : 12/22/98lev = log2(N);es = zeros(2,2,lev);ps = zeros(2,lev);si = zeros(2,lev);mu = zeros(2,lev);% parameter constraints for real-world imagesalpha_big = 2.5;C1_big = 13;alpha_sm = 2.5;C1_sm = 7;beta = 1;% variances decay exponentiallyJJ = 1:lev;si(1,:) = 2^(C1_sm)*2.^(-alpha_sm*JJ);si(2,:) = 2^(C1_big)*2.^(-alpha_big*JJ);% Transition matrices have p00->1 and p11->.5p00(1:3) = 1;p00(4:lev) = .8 + .2*(1-2.^-(beta*(0:lev-4)));p11(1:3) = 1;p11(4:lev) = .9 - .4*(1-2.^-(beta*(0:lev-4)));p10 = 1 - p00;for ii = 1:lev es(2,2,ii) = p11(ii); es(2,1,ii) = p10(ii); es(1,1,ii) = 1 - p10(ii); es(1,2,ii) = 1 - p11(ii);end% mixture probabilities are determined by the transistion matrices and a% distribution on the initial state of the coarsest wavelet coefficientps(:,1) = [.5 .5]';for ii = 2:lev ps(:,ii) = es(:,:,ii)*ps(:,ii-1);end[ES, PS, MU, SI] = vec2mat(es,es,es,si,si,si,mu,mu,mu,si,si,si);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -