📄 fig4_1.m
字号:
clc
clear all
close all
%--------------------------------------------------------------------------
% 方程表达式
% dx/dt = sigma*(y-x)
% dy/dt = r*x - y - x*z
% dz/dt = -b*z + x*y
b = 100;
h = 0.001; % 积分时间步长
k1 = 10000; % 前面的迭代点数
k2 = 1000; % 后面的迭代点数
rmaxmin=0; KK1=0; KK2=0;
%brc=zeros(length(200:850),length(1:0.01:1.6));
sigma_ar=200:1:850;
pp_ar=1:0.001:1.6;
kk1=0;
for cc=1:length(sigma_ar);
sigma=sigma_ar(cc);
rc=sigma*(sigma+b+3)/(sigma-b-1);
kk1=kk1+1;
kk2=0;
for pp=1:length(pp_ar)
kk2=kk2+1;
y = [265,-384,590]./1.65.*pp_ar(pp);
r=rc*pp_ar(pp);
data = LorenzData(y,h,k1+k2,sigma,r,b);
data = data(k1+1:end,:);
X = data(:,1);
% Y = data(:,2);
% Z = data(:,3);
% figure
% plot3(Z,Y,X);
% xlabel('Z');ylabel('Y');zlabel('X');
% title('Lorenz attractor');
%
% figure(2)
% xx=abs(fft(X(1:1:end)));
% plot(20*log10(xx/max(xx)));
% rr=xcorr(X,X);
% rr=20*(log10(abs(rr)/max(abs(rr))));
% brc(kk1,kk2) = max(rr(1:floor(k2/2)-1));
% if brc(kk1,kk2)< rmaxmin
% plot(r);
% rmaxmin=brc(kk1,kk2);
% KK1=kk1;
% KK2=KK2;
% end
Xp=max(X);
Xm=sqrt(sum((X.^2))/length(X));
pv=Xp/Xm;
brc(kk2,kk1) = pv;
end
sigma
end
%plot(pp_ar,sigma_ar,brc);
pcolor(sigma_ar,pp_ar,brc)
colorbar;
colormap gray
colormap hot
%colormap(hsv(128))
nn=brc<1.9;
nn=sum(sum(nn))
load x
figure(3)
xx=abs(fft(x1(1:1:end)));
plot(20*log10(xx/max(xx)),'r--');
hold on
xx=abs(fft(x2(1:1:end)));
plot(20*log10(xx/max(xx)),'r--');
xx=abs(fft(x3(1:1:end)));
plot(20*log10(xx/max(xx)),'k-');
xx;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -