⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 error_plane.m

📁 RANSAC Toolbox by Marco Zuliani email: marco.zuliani@gmail.com -------------------------------
💻 M
字号:
function [E T_noise] = error_plane(Theta, X, sigma, P_inlier)% [E T_noise] = error_plane(Theta, X, sigma, P_inlier)%% DESC:% estimate the squared fitting error for a plane expresed in cartesian form%% a*x1+b*y1+c*z1+d = 0% a*x2+b*y2+c*z2+d = 0% a*x3+b*y3+c*z3+d = 0%% VERSION:% 1.0.0%% INPUT:% Theta             = plane parameter vector% X                 = samples on the manifold% sigma             = noise std% P_inlier          = Chi squared probability threshold for inliers%                     If 0 then use directly sigma.%% OUTPUT:% E                 = squared symmetric reprojection error % T_noise           = noise threshold% AUTHOR:% Marco Zuliani, email: marco.zuliani@gmail.com% Copyright (C) 2008 by Marco Zuliani % % LICENSE:% This toolbox is distributed under the terms of the GNU LGPL.% Please refer to the files COPYING and COPYING.LESSER for more information.% HISTORY%% 1.0.0             - 07/05/08 initial version% compute the squared errorE = [];if ~isempty(Theta) && ~isempty(X)        den = Theta(1)^2 + Theta(2)^2 + Theta(3)^2;        E = ( ...        Theta(1)*X(1,:) + ...        Theta(2)*X(2,:) + ...        Theta(3)*X(3,:) + ...        Theta(4)...        ).^2 / den;                end;% compute the error thresholdif (nargout > 1)        if (P_inlier == 0)        T_noise = sigma;    else        % Assumes the errors are normally distributed. Hence the sum of        % their squares is Chi distributed (with 3 DOF since we are         % computing the distance of a 3D point to a plane)                % compute the inverse probability        T_noise = sigma^2 * chi2inv_LUT(P_inlier, 3);    end;    end;return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -