⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 error_homography.m

📁 RANSAC Toolbox by Marco Zuliani email: marco.zuliani@gmail.com -------------------------------
💻 M
字号:
function [E T_noise] = error_homography(Theta, X, sigma, P_inlier)% [E T_noise] = error_homography(Theta, X, sigma, P_inlier)%% DESC:% estimate the squared symmetric transfer error due to the homographic % constraint%% VERSION:% 1.0.0%% INPUT:% Theta             = homography parameter vector% X                 = samples on the manifold% sigma             = noise std% P_inlier          = Chi squared probability threshold for inliers%                     If 0 then use directly sigma.%% OUTPUT:% E                 = squared symmetric reprojection error % T_noise           = noise threshold% AUTHOR:% Marco Zuliani, email: marco.zuliani@gmail.com% Copyright (C) 2008 by Marco Zuliani % % LICENSE:% This toolbox is distributed under the terms of the GNU LGPL.% Please refer to the files COPYING and COPYING.LESSER for more information.% HISTORY%% 1.0.0             - 11/18/06 initial version% compute the squared symmetric reprojection errorE = [];if ~isempty(Theta) && ~isempty(X)            H = reshape(Theta, 3, 3);        X12 = homo2cart(H*cart2homo(X(1:2, :)));    X21 = homo2cart(H\cart2homo(X(3:4, :)));        E1 = sum((X(1:2, :)-X21).^2, 1);    E2 = sum((X(3:4, :)-X12).^2, 1);        E = E1 + E2;end;% compute the error thresholdif (nargout > 1)        if (P_inlier == 0)        T_noise = sigma;    else        % Assumes the errors are normally distributed. Hence the sum of        % their squares is Chi distributed (with 4 DOF since the symmetric         % distance contributes for two terms and the dimensionality is 2)                % compute the inverse probability        T_noise = sigma^2 * chi2inv_LUT(P_inlier, 4);    end;    end;return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -