📄 f500_spi0_eeprom_polled_mode.c
字号:
CKCON |= 0x10;
}
//-----------------------------------------------------------------------------
// UART0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Configure the UART0 using Baudrate generator, for <BAUDRATE1> and 8-N-1.
//
//-----------------------------------------------------------------------------
void UART0_Init (void)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = CONFIG_PAGE;
SCON0 = 0x10; // SCON0: 8-bit variable bit rate
// clear RI0 and TI0 bits
// Baud Rate = [BRG Clock / (65536 - (SBRLH0:SBRLL0))] x 1/2 x 1/Prescaler
#if ((SYSCLK / BAUDRATE / 2 / 0xFFFF) < 1)
SBRL0 = -(SYSCLK / BAUDRATE / 2);
SBCON0 |= 0x03; // Set prescaler to 1
#elif ((SYSCLK / BAUDRATE / 2 / 0xFFFF) < 4)
SBRL0 = -(SYSCLK / BAUDRATE / 2 / 4);
SBCON0 &= ~0x03;
SBCON0 |= 0x01; // Set prescaler to 4
#elif ((SYSCLK / BAUDRATE / 2 / 0xFFFF) < 12)
SBRL0 = -(SYSCLK / BAUDRATE / 2 / 12);
SBCON0 &= ~0x03; // Set prescaler to 12
#else
SBRL0 = -(SYSCLK / BAUDRATE / 2 / 48);
SBCON0 &= ~0x03;
SBCON0 |= 0x02; // Set prescaler to 48
#endif
SBCON0 |= 0x40; // Enable baud rate generator
TI0 = 1; // Indicate TX0 ready
SFRPAGE = SFRPAGE_save;
}
//-----------------------------------------------------------------------------
// SPI0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Configures SPI0 to use 4-wire Single-Master mode. The SPI timing is
// configured for Mode 0,0 (data centered on first edge of clock phase and
// SCK line low in idle state). The SPI clock is set to 1.75 MHz. The NSS pin
// is set to 1.
//
//-----------------------------------------------------------------------------
void SPI0_Init()
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = ACTIVE_PAGE;
SPI0CFG = 0x40; // Enable the SPI as a Master
// CKPHA = '0', CKPOL = '0'
SPI0CN = 0x0D; // 4-wire, single master mode
// SPI0 enable
// The equation for SPI0CKR is (SYSCLK/(2*F_SCK_MAX))-1, but this yields
// a SPI frequency that is slightly more than 2 MHz. But, 2 MHz is the max
// frequency spec of the EEPROM used here. So, the "-1" term is omitted
// in the following usage:
SPI0CKR = (SYSCLK / (2 * F_SCK_MAX));
SFRPAGE = SFRPAGE_save;
}
//-----------------------------------------------------------------------------
// Init_Device
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Calls all device initialization functions.
//
//-----------------------------------------------------------------------------
void Init_Device (void)
{
PCA0_Init ();
OSCILLATOR_Init ();
PORT_Init ();
TIMER2_Init ();
UART0_Init ();
SPI0_Init ();
}
//-----------------------------------------------------------------------------
// Support Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Delay_us
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. time_us - time delay in microseconds
// range: 1 to 255
//
// Creates a delay for the specified time (in microseconds) using TIMER2. The
// time tolerance is approximately +/-50 ns (1/SYSCLK + function call time).
//
//-----------------------------------------------------------------------------
void Delay_us (U8 time_us)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = ACTIVE_PAGE;
TR2 = 0; // Stop timer
TF2H = 0; // Clear timer overflow flag
TMR2 = -((U16)(SYSCLK / 1000000) * (U16)(time_us));
TR2 = 1; // Start timer
while (!TF2H); // Wait till timer overflow occurs
TR2 = 0; // Stop timer
SFRPAGE = SFRPAGE_save;
}
//-----------------------------------------------------------------------------
// Delay_ms
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. time_ms - time delay in milliseconds
// range: 1 to 255
//
// Creates a delay for the specified time (in milliseconds) using TIMER2. The
// time tolerance is approximately +/-50 ns (1/SYSCLK + function call time).
//
//-----------------------------------------------------------------------------
void Delay_ms (U8 time_ms)
{
U8 i;
while(time_ms--)
{
for(i = 0; i< 10; i++) // 10 * 100 microsecond delay
{
Delay_us (100);
}
}
}
//-----------------------------------------------------------------------------
// EEPROM_Write
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. address - the destination EEPROM address.
// range: 0 to EEPROM_CAPACITY
// 2. value - the value to write.
// range: 0x00 to 0xFF
//
// Writes one byte to the specified address in the EEPROM. This function polls
// the EEPROM status register after the write operation, and returns only after
// the status register indicates that the write cycle is complete. This is to
// prevent from having to check the status register before a read operation.
//
//-----------------------------------------------------------------------------
void EEPROM_Write (U16 address, U8 value)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = ACTIVE_PAGE;
// Writing a byte to the EEPROM is a five-step operation.
// Step1: Set the Write Enable Latch to 1
NSSMD0 = 0; // Step1.1: Activate Slave Select
SPI0DAT = EEPROM_CMD_WREN; // Step1.2: Send the WREN command
while (!SPIF); // Step1.3: Wait for end of transfer
SPIF = 0; // Step1.4: Clear the SPI intr. flag
NSSMD0 = 1; // Step1.5: Deactivate Slave Select
Delay_us (1); // Step1.6: Wait for at least
// T_NSS_DISABLE_MIN
// Step2: Send the WRITE command
NSSMD0 = 0;
SPI0DAT = EEPROM_CMD_WRITE;
while (!SPIF);
SPIF = 0;
// Step3: Send the EEPROM destination address (MSB first)
SPI0DAT = (U8)((address >> 8) & 0x00FF);
while (!SPIF);
SPIF = 0;
SPI0DAT = (U8)(address & 0x00FF);
while (!SPIF);
SPIF = 0;
// Step4: Send the value to write
SPI0DAT = value;
while (!SPIF);
SPIF = 0;
NSSMD0 = 1;
Delay_us (1);
// Step5: Poll on the Write In Progress (WIP) bit in Read Status Register
do
{
NSSMD0 = 0; // Activate Slave Select
SPI0DAT = EEPROM_CMD_RDSR; // Send the Read Status Register command
while (!SPIF); // Wait for the command to be sent out
SPIF = 0;
SPI0DAT = 0; // Dummy write to output serial clock
while (!SPIF); // Wait for the register to be read
SPIF = 0;
NSSMD0 = 1; // Deactivate Slave Select after read
Delay_us (1);
} while((SPI0DAT & 0x01) == 0x01);
SFRPAGE = SFRPAGE_save;
}
//-----------------------------------------------------------------------------
// EEPROM_Read
//-----------------------------------------------------------------------------
//
// Return Value : The value that was read from the EEPROM
// range: 0x00 to 0xFF
// Parameters : 1. address - the source EEPROM address.
// range: 0 to EEPROM_CAPACITY
//
// Reads one byte from the specified EEPROM address.
//
//-----------------------------------------------------------------------------
U8 EEPROM_Read (U16 address)
{
U8 spi_data;
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = ACTIVE_PAGE;
// Reading a byte from the EEPROM is a three-step operation.
// Step1: Send the READ command
NSSMD0 = 0; // Activate Slave Select
SPI0DAT = EEPROM_CMD_READ;
while (!SPIF);
SPIF = 0;
// Step2: Send the EEPROM source address (MSB first)
SPI0DAT = (U8)((address >> 8) & 0x00FF);
while (!SPIF);
SPIF = 0;
SPI0DAT = (U8)(address & 0x00FF);
while (!SPIF);
SPIF = 0;
// Step3: Read the value returned
SPI0DAT = 0; // Dummy write to output serial clock
while (!SPIF); // Wait for the value to be read
SPIF = 0;
NSSMD0 = 1; // Deactivate Slave Select
Delay_us (1);
spi_data = SPI0DAT; // Read data before restoring SFR page
SFRPAGE = SFRPAGE_save;
return spi_data;
}
#ifdef SDCC
// SDCC does not include a definition for putchar(), which is used in printf()
// and so it is defined here. The prototype does not need to be explicitly
// defined because it is provided in stdio.h
//-----------------------------------------------------------------------------
// putchar
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : character to send to UART
//
// This function outputs a character to the UART.
//-----------------------------------------------------------------------------
void putchar (char input)
{
if (output == '\n')
{
while (!TI0);
TI0 = 0;
SBUF0 = 0x0d;
}
while (!TI0);
TI0 = 0;
SBUF0 = output;
}
#endif
//-----------------------------------------------------------------------------
// End Of File
//-----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -