📄 f500_adc0_externalinput_mux.c
字号:
//-----------------------------------------------------------------------------
// F500_ADC0_ExternalInput_Mux.c
//-----------------------------------------------------------------------------
// Copyright 2008 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// This code example illustrates using the internal analog multiplexer to
// measure analog voltages on up to 8 different analog inputs. Results are
// printed to a PC terminal program via the UART.
//
// The inputs are sequentially scanned, beginning with input 1 (P2.0), up
// to input number <ANALOG_INPUTS>-1 based on the values in <PIN_TABLE>.
//
//
// ADC Settling Time Requirements, Sampling Rate:
// ----------------------------------------------
//
// The total sample time per input is comprised of an input setting time
// (Tsettle), followed by a conversion time (Tconvert):
//
// Tsample = Tsettle + Tconvert
//
// Settling and conversion times may overlap, as the ADC holds the value once
// conversion begins. This program takes advantage of this to increase the
// settling time above the minimum required. In other words, when
// converting the value from analog input Ain(n), the input mux is switched
// over to the next input Ain(n+1) to begin settling.
//
// |---Settling Ain(n)---|=Conversion Ain(n)=|
// |---Settling Ain(n+1)---|=Conversion Ain(n+1)=|
// |---Settling Ain(n+2)---|
// ISR: Timer 2 ^ ^ ^
// ISR: ADC0 ^ ^
//
// The ADC input voltage must be allowed adequate time to settle before the
// conversion is made. This settling depends on the external source
// impedance, internal mux impedance, and internal capacitance.
// Settling time is given by:
//
// | 2^n |
// Tsettle = ln | --- | * Rtotal * Csample
// | SA |
//
// In this application, assume a 100kohm potentiometer as the voltage divider.
// The expression evaluates to:
//
// | 2^12 |
// Tsettle = ln | ---- | * 105e3 * 10e-12 = 10.2uS
// | 0.25 |
//
// In addition, one must allow at least 1.5 us after changing analog MUX
// inputs or PGA settings. The settling time in this example, then, is
// dictated by the large external source resistance.
//
// The conversion is 16 periods of the SAR clock. At 2.5 MHz,
// this time is 16 * 400nS = 6.4 uS.
//
//
// Tsample, minimum = Tsettle + Tconvert
// = 10.2uS + 6.4uS
// = 16.6 uS
//
// Timer2 is set to change the MUX input and start a conversion every 20 us.
//
// General:
// --------
//
// The system is clocked using the internal 24 MHz oscillator. Results are
// printed to the UART from a loop with the rate set by a delay based on
// Timer0. This loop periodically reads the ADC value from a global array,
// <RESULT>.
//
// The ADC makes repeated measurements at 20 us intervals based on Timer2.
// The end of each ADC conversion initiates an interrupt which calls an
// averaging function. <INT_DEC> samples are averaged, then the Result
// values updated.
//
// For each power of 4 of <INT_DEC>, you gain 1 bit of effective resolution.
// For example, <INT_DEC> = 256 gain you 4 bits of resolution: 4^4 = 256.
//
// The ADC input multiplexer is set for a single-ended input. The example
// sequentially scans through the inputs, starting at P2.0. <ANALOG_INPUTS>
// inputs are read. The amplifier is set for 0.44 gain so a voltage range of
// 0 to 5V (2.2V) may be measured. Although voltages up to 5V may be
// applied without damaging the device, only the range 0 to VREF may be
// measured by the ADC.
//
// A 100 kohm potentiometer may be connected as a voltage divider between
// VREF and AGND as shown below:
//
// ---------
// |
// o| AGND ----|
// o| VREF ----|<-|
// o| P2.x | |
// o| | |
// o| --------
// o|
// o|
// o|
// |
// ---------
//
// How To Test:
//
// 1) Download code to a 'F500 device that is connected to a UART transceiver
// 2) Verify the TX and RX jumpers are populated on J17.
// 3) Connect USB cable from the development board to a PC
// 4) On the PC, open HyperTerminal (or any other terminal program) and connect
// to the USB port (virtual com port) at <BAUDRATE>, 8 data bits, no parity,
// 1 stop bit and no flow control.
// 5) HyperTerminal will print the voltages measured by the device if
// everything is working properly. Note that some of the analog inputs are
// floating and will return nonzero values.
//
// Target: C8051F500 (Side A of a C8051F500-TB)
// Tool chain: Keil C51 8.0 / Keil EVAL C51
// Command Line: None
//
// Release 1.1 / 10 JUN 2008 (ADT)
// -Edited formatting
//
// Release 1.0 / 03 MAR 2008 (GP)
// -Initial Revision
//
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
#include <compiler_defs.h>
#include <C8051F500_defs.h> // SFR declarations
#include <stdio.h>
//-----------------------------------------------------------------------------
// Global CONSTANTS
//-----------------------------------------------------------------------------
#define SYSCLK 24000000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define ANALOG_INPUTS 8 // Number of AIN pins to measure,
// skipping the UART0 pins
#define INT_DEC 256 // Integrate and decimate ratio
#define TIMER0_RELOAD_HIGH 0 // Timer0 High register
#define TIMER0_RELOAD_LOW 255 // Timer0 Low register
//-----------------------------------------------------------------------------
// Function PROTOTYPES
//-----------------------------------------------------------------------------
void OSCILLATOR_Init (void);
void PORT_Init (void);
void TIMER2_Init (void);
void ADC0_Init (void);
void UART0_Init (void);
void Timer0_wait (int ms);
INTERRUPT_PROTO (ADC_ISR, INTERRUPT_ADC0_EOC);
INTERRUPT_PROTO (TIMER2_ISR, INTERRUPT_TIMER2);
//-----------------------------------------------------------------------------
// Global Variables
//-----------------------------------------------------------------------------
// ADC0 decimated value, one for each analog input
SEGMENT_VARIABLE (RESULT[ANALOG_INPUTS], U32, xdata);
// ADC0 input matrix. Bit-wise OR with 0x10 to get the ADC0MX setting for P2
U8 PIN_TABLE[ANALOG_INPUTS] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 };
U8 AMUX_INPUT = 0; // Index of analog MUX inputs
// Integrate accumulator for the ADC samples from input pins
U32 accumulator[ANALOG_INPUTS];
//-----------------------------------------------------------------------------
// MAIN Routine
//-----------------------------------------------------------------------------
void main (void)
{
U8 i; // Loop counter
U32 measurement; // Voltage measurement
SFRPAGE = ACTIVE_PAGE; // Set for PCA0MD and for printf()
PCA0MD &= ~0x40; // Disable the watchdog timer
OSCILLATOR_Init (); // Initialize system clock
PORT_Init (); // Initialize crossbar and GPIO
TIMER2_Init (); // Init Timer2 to trigger ADC
UART0_Init (); // Initialize UART0 for printf's
ADC0_Init (); // Initialize ADC0
// Initialize global variable
for (i = 0; i < ANALOG_INPUTS; i++)
{
accumulator[i] = 0;
}
EA = 1; // Enable global interrupts
while (1)
{
EA = 0; // Disable interrupts
printf ("\f");
for (i = 0; i < ANALOG_INPUTS; i++)
{
// The 12-bit ADC value is averaged across INT_DEC measurements.
// The result is then stored in RESULT, and is right-justified
// The measured voltage applied to the port pins is then:
//
// Vref (mV)
// measurement (mV) = --------------- * Result (bits)
// (2^12)-1 (bits)
//
// Then multiply the result by 2.27 to account for the 0.44 gain
// applied earlier
measurement = RESULT[i] * 2400 / 4096 * 227 / 100;
printf("P2.%bu voltage: %4ld mV\n", PIN_TABLE[i], measurement);
}
EA = 1; // Re-enable interrupts
Timer0_wait(20); // Wait before displaying new values
}
}
//-----------------------------------------------------------------------------
// Initialization Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// OSCILLATOR_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// This routine initializes the system clock to use the internal 24 MHz
// oscillator as its clock source. Also enables missing clock detector reset.
//
//-----------------------------------------------------------------------------
void OSCILLATOR_Init (void)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = CONFIG_PAGE;
OSCICN = 0x87; // Configure internal oscillator for
// its highest frequency
RSTSRC = 0x04; // Enable missing clock detector
SFRPAGE = SFRPAGE_save;
}
//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Return Value: None
// Parameters: None
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 - analog VREF
// P0.4 - digital push-pull UART TX
// P0.5 - digital open-drain UART RX
//
// P1.3 - digital push-pull LED
//
// P2.0 - P2.7 analog ADC inputs
//
//-----------------------------------------------------------------------------
void PORT_Init (void)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = CONFIG_PAGE;
P0SKIP |= 0x01; // Skip P0.0 (VREF)
P0MDOUT |= 0x10; // Set TX pin to push-pull
P0MDIN &= ~0x01; // Set VREF to analog
P1MDOUT |= 0x08; // Enable LED as a push-pull output
P2SKIP = 0xFF; // Skip all of P2 for analog inputs
P2MDIN = 0x00; // Configure all of P2 as analog inputs
XBR0 = 0x01; // Enable UART0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -