⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cpcollision.c

📁 Compressed file has password
💻 C
字号:
/* Copyright (c) 2007 Scott Lembcke *  * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: *  * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. *  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <stdlib.h>#include <math.h>#include <stdio.h>#include <assert.h>#include "chipmunk.h"typedef int (*collisionFunc)(cpShape*, cpShape*, cpContact**);static collisionFunc *colfuncs = NULL;// Add contact points for circle to circle collisions.// Used by several collision tests.static intcircle2circleQuery(cpVect p1, cpVect p2, cpFloat r1, cpFloat r2, cpContact **con){	cpFloat mindist = r1 + r2;	cpVect delta = cpvsub(p2, p1);	cpFloat distsq = cpvlengthsq(delta);	if(distsq >= mindist*mindist) return 0;		cpFloat dist = sqrtf(distsq);	// To avoid singularities, do nothing in the case of dist = 0.	cpFloat non_zero_dist = (dist ? dist : INFINITY);	// Allocate and initialize the contact.	(*con) = (cpContact *)malloc(sizeof(cpContact));	cpContactInit(		(*con),		cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/non_zero_dist)),		cpvmult(delta, 1.0f/non_zero_dist),		dist - mindist,		0	);		return 1;}// Collide circle shapes.static intcircle2circle(cpShape *shape1, cpShape *shape2, cpContact **arr){	cpCircleShape *circ1 = (cpCircleShape *)shape1;	cpCircleShape *circ2 = (cpCircleShape *)shape2;		return circle2circleQuery(circ1->tc, circ2->tc, circ1->r, circ2->r, arr);}// Collide circles to segment shapes.static intcircle2segment(cpShape *circleShape, cpShape *segmentShape, cpContact **con){	cpCircleShape *circ = (cpCircleShape *)circleShape;	cpSegmentShape *seg = (cpSegmentShape *)segmentShape;		// Radius sum	cpFloat rsum = circ->r + seg->r;		// Calculate normal distance from segment.	cpFloat dn = cpvdot(seg->tn, circ->tc) - cpvdot(seg->ta, seg->tn);	cpFloat dist = fabsf(dn) - rsum;	if(dist > 0.0f) return 0;		// Calculate tangential distance along segment.	cpFloat dt = -cpvcross(seg->tn, circ->tc);	cpFloat dtMin = -cpvcross(seg->tn, seg->ta);	cpFloat dtMax = -cpvcross(seg->tn, seg->tb);		// Decision tree to decide which feature of the segment to collide with.	if(dt < dtMin){		if(dt < (dtMin - rsum)){			return 0;		} else {			return circle2circleQuery(circ->tc, seg->ta, circ->r, seg->r, con);		}	} else {		if(dt < dtMax){			cpVect n = (dn < 0.0f) ? seg->tn : cpvneg(seg->tn);			(*con) = (cpContact *)malloc(sizeof(cpContact));			cpContactInit(				(*con),				cpvadd(circ->tc, cpvmult(n, circ->r + dist*0.5f)),				n,				dist,				0				 			);			return 1;		} else {			if(dt < (dtMax + rsum)) {				return circle2circleQuery(circ->tc, seg->tb, circ->r, seg->r, con);			} else {				return 0;			}		}	}		return 1;}// Helper function for allocating contact point lists.static cpContact *addContactPoint(cpContact **arr, int *max, int *num){	if(*arr == NULL){		// Allocate the array if it hasn't been done.		(*max) = 2;		(*num) = 0;		(*arr) = (cpContact *)malloc((*max)*sizeof(cpContact));	} else if(*num == *max){		// Extend it if necessary.		(*max) *= 2;		(*arr) = (cpContact *)realloc(*arr, (*max)*sizeof(cpContact));	}		cpContact *con = &(*arr)[*num];	(*num)++;		return con;}// Find the minimum separating axis for the give poly and axis list.static inline intfindMSA(cpPolyShape *poly, cpPolyShapeAxis *axes, int num, cpFloat *min_out){	int min_index = 0;	cpFloat min = cpPolyShapeValueOnAxis(poly, axes->n, axes->d);	if(min > 0.0) return -1;		for(int i=1; i<num; i++){		cpFloat dist = cpPolyShapeValueOnAxis(poly, axes[i].n, axes[i].d);		if(dist > 0.0) {			return -1;		} else if(dist > min){			min = dist;			min_index = i;		}	}		(*min_out) = min;	return min_index;}// Add contacts for penetrating vertexes.static inline intfindVerts(cpContact **arr, cpPolyShape *poly1, cpPolyShape *poly2, cpVect n, cpFloat dist){	int max = 0;	int num = 0;		for(int i=0; i<poly1->numVerts; i++){		cpVect v = poly1->tVerts[i];		if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))			cpContactInit(addContactPoint(arr, &max, &num), v, n, dist, CP_HASH_PAIR(poly1, i));	}		for(int i=0; i<poly2->numVerts; i++){		cpVect v = poly2->tVerts[i];		if(cpPolyShapeContainsVertPartial(poly1, v, n))			cpContactInit(addContactPoint(arr, &max, &num), v, n, dist, CP_HASH_PAIR(poly2, i));	}		//	if(!num)	//		addContactPoint(arr, &size, &num, cpContactNew(shape1->body->p, n, dist, 0));	return num;}// Collide poly shapes together.static intpoly2poly(cpShape *shape1, cpShape *shape2, cpContact **arr){	cpPolyShape *poly1 = (cpPolyShape *)shape1;	cpPolyShape *poly2 = (cpPolyShape *)shape2;		cpFloat min1;	int mini1 = findMSA(poly2, poly1->tAxes, poly1->numVerts, &min1);	if(mini1 == -1) return 0;		cpFloat min2;	int mini2 = findMSA(poly1, poly2->tAxes, poly2->numVerts, &min2);	if(mini2 == -1) return 0;		// There is overlap, find the penetrating verts	if(min1 > min2)		return findVerts(arr, poly1, poly2, poly1->tAxes[mini1].n, min1);	else		return findVerts(arr, poly1, poly2, cpvneg(poly2->tAxes[mini2].n), min2);}// Like cpPolyValueOnAxis(), but for segments.static inline floatsegValueOnAxis(cpSegmentShape *seg, cpVect n, cpFloat d){	cpFloat a = cpvdot(n, seg->ta) - seg->r;	cpFloat b = cpvdot(n, seg->tb) - seg->r;	return cpfmin(a, b) - d;}// Identify vertexes that have penetrated the segment.static inline voidfindPointsBehindSeg(cpContact **arr, int *max, int *num, cpSegmentShape *seg, cpPolyShape *poly, cpFloat pDist, cpFloat coef) {	cpFloat dta = cpvcross(seg->tn, seg->ta);	cpFloat dtb = cpvcross(seg->tn, seg->tb);	cpVect n = cpvmult(seg->tn, coef);		for(int i=0; i<poly->numVerts; i++){		cpVect v = poly->tVerts[i];		if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){			cpFloat dt = cpvcross(seg->tn, v);			if(dta >= dt && dt >= dtb){				cpContactInit(addContactPoint(arr, max, num), v, n, pDist, CP_HASH_PAIR(poly, i));			}		}	}}// This one is complicated and gross. Just don't go there...// TODO: Comment me!static intseg2poly(cpShape *shape1, cpShape *shape2, cpContact **arr){	cpSegmentShape *seg = (cpSegmentShape *)shape1;	cpPolyShape *poly = (cpPolyShape *)shape2;	cpPolyShapeAxis *axes = poly->tAxes;		cpFloat segD = cpvdot(seg->tn, seg->ta);	cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;	cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;	if(minNeg > 0.0f || minNorm > 0.0f) return 0;		int mini = 0;	cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d);	if(poly_min > 0.0f) return 0;	for(int i=0; i<poly->numVerts; i++){		cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d);		if(dist > 0.0f){			return 0;		} else if(dist > poly_min){			poly_min = dist;			mini = i;		}	}		int max = 0;	int num = 0;		cpVect poly_n = cpvneg(axes[mini].n);		cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));	cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));	if(cpPolyShapeContainsVert(poly, va))		cpContactInit(addContactPoint(arr, &max, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg, 0));	if(cpPolyShapeContainsVert(poly, vb))		cpContactInit(addContactPoint(arr, &max, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg, 1));	// Floating point precision problems here.	// This will have to do for now.	poly_min -= cp_collision_slop;	if(minNorm >= poly_min || minNeg >= poly_min) {		if(minNorm > minNeg)			findPointsBehindSeg(arr, &max, &num, seg, poly, minNorm, 1.0f);		else			findPointsBehindSeg(arr, &max, &num, seg, poly, minNeg, -1.0f);	}		// If no other collision points are found, try colliding endpoints.	if(num == 0){		cpVect poly_a = poly->tVerts[mini];		cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts];				if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr))			return 1;					if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr))			return 1;					if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr))			return 1;					if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr))			return 1;	}	return num;}// This one is less gross, but still gross.// TODO: Comment me!static intcircle2poly(cpShape *shape1, cpShape *shape2, cpContact **con){	cpCircleShape *circ = (cpCircleShape *)shape1;	cpPolyShape *poly = (cpPolyShape *)shape2;	cpPolyShapeAxis *axes = poly->tAxes;		int mini = 0;	cpFloat min = cpvdot(axes->n, circ->tc) - axes->d - circ->r;	for(int i=0; i<poly->numVerts; i++){		cpFloat dist = cpvdot(axes[i].n, circ->tc) - axes[i].d - circ->r;		if(dist > 0.0){			return 0;		} else if(dist > min) {			min = dist;			mini = i;		}	}		cpVect n = axes[mini].n;	cpVect a = poly->tVerts[mini];	cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];	cpFloat dta = cpvcross(n, a);	cpFloat dtb = cpvcross(n, b);	cpFloat dt = cpvcross(n, circ->tc);			if(dt < dtb){		return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);	} else if(dt < dta) {		(*con) = (cpContact *)malloc(sizeof(cpContact));		cpContactInit(			(*con),			cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),			cpvneg(n),			min,			0				 		);			return 1;	} else {		return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);	}}static voidaddColFunc(cpShapeType a, cpShapeType b, collisionFunc func){	colfuncs[a + b*CP_NUM_SHAPES] = func;}#ifdef __cplusplusextern "C" {#endif	// Initializes the array of collision functions.	// Called by cpInitChipmunk().	void	cpInitCollisionFuncs(void)	{		if(!colfuncs)			colfuncs = (collisionFunc *)calloc(CP_NUM_SHAPES*CP_NUM_SHAPES, sizeof(collisionFunc));				addColFunc(CP_CIRCLE_SHAPE,  CP_CIRCLE_SHAPE,  circle2circle);		addColFunc(CP_CIRCLE_SHAPE,  CP_SEGMENT_SHAPE, circle2segment);		addColFunc(CP_SEGMENT_SHAPE, CP_POLY_SHAPE,    seg2poly);		addColFunc(CP_CIRCLE_SHAPE,  CP_POLY_SHAPE,    circle2poly);		addColFunc(CP_POLY_SHAPE,    CP_POLY_SHAPE,    poly2poly);	}	#ifdef __cplusplus}#endifintcpCollideShapes(cpShape *a, cpShape *b, cpContact **arr){	// Their shape types must be in order.	assert(a->klass->type <= b->klass->type);		collisionFunc cfunc = colfuncs[a->klass->type + b->klass->type*CP_NUM_SHAPES];	return (cfunc) ? cfunc(a, b, arr) : 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -