⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simplebusat.h

📁 SystemC Transaction Level Modelling. 是基于SystemC之上的总线互联协议
💻 H
字号:
/*****************************************************************************  The following code is derived, directly or indirectly, from the SystemC  source code Copyright (c) 1996-2008 by all Contributors.  All Rights reserved.  The contents of this file are subject to the restrictions and limitations  set forth in the SystemC Open Source License Version 3.0 (the "License");  You may not use this file except in compliance with such restrictions and  limitations. You may obtain instructions on how to receive a copy of the  License at http://www.systemc.org/. Software distributed by Contributors  under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF  ANY KIND, either express or implied. See the License for the specific  language governing rights and limitations under the License. *****************************************************************************/#ifndef __SIMPLEBUSAT_H__#define __SIMPLEBUSAT_H__//#include <systemc>#include "tlm.h"#include "tlm_utils/simple_target_socket.h"#include "tlm_utils/simple_initiator_socket.h"#include "tlm_utils/peq_with_get.h"template <int NR_OF_INITIATORS, int NR_OF_TARGETS>class SimpleBusAT : public sc_core::sc_module{public:  typedef tlm::tlm_generic_payload               transaction_type;  typedef tlm::tlm_phase                         phase_type;  typedef tlm::tlm_sync_enum                     sync_enum_type;  typedef tlm_utils::simple_target_socket_tagged<SimpleBusAT>    target_socket_type;  typedef tlm_utils::simple_initiator_socket_tagged<SimpleBusAT> initiator_socket_type;public:  target_socket_type target_socket[NR_OF_INITIATORS];  initiator_socket_type initiator_socket[NR_OF_TARGETS];public:  SC_HAS_PROCESS(SimpleBusAT);  SimpleBusAT(sc_core::sc_module_name name) :    sc_core::sc_module(name),    mRequestPEQ("requestPEQ"),    mResponsePEQ("responsePEQ")  {     for (unsigned int i = 0; i < NR_OF_INITIATORS; ++i) {       target_socket[i].register_nb_transport_fw(this, &SimpleBusAT::initiatorNBTransport, i);       target_socket[i].register_transport_dbg(this, &SimpleBusAT::transportDebug, i);       target_socket[i].register_get_direct_mem_ptr(this, &SimpleBusAT::getDMIPointer, i);     }     for (unsigned int i = 0; i < NR_OF_TARGETS; ++i) {       initiator_socket[i].register_nb_transport_bw(this, &SimpleBusAT::targetNBTransport, i);       initiator_socket[i].register_invalidate_direct_mem_ptr(this, &SimpleBusAT::invalidateDMIPointers, i);     }     SC_THREAD(RequestThread);     SC_THREAD(ResponseThread);  }  //  // Dummy decoder:  // - address[31-28]: portId  // - address[27-0]: masked address  //  unsigned int getPortId(const sc_dt::uint64& address)  {    return (unsigned int)address >> 28;  }  sc_dt::uint64 getAddressOffset(unsigned int portId)  {    return portId << 28;  }  sc_dt::uint64 getAddressMask(unsigned int portId)  {    return 0xfffffff;  }  unsigned int decode(const sc_dt::uint64& address)  {    // decode address:    // - return initiator socket id    return getPortId(address);  }  //  // AT protocol  //  void RequestThread()  {    while (true) {      wait(mRequestPEQ.get_event());      transaction_type* trans;      while ((trans = mRequestPEQ.get_next_transaction())!=0) {        unsigned int portId = decode(trans->get_address());        assert(portId < NR_OF_TARGETS);        initiator_socket_type* decodeSocket = &initiator_socket[portId];        trans->set_address(trans->get_address() & getAddressMask(portId));        // Fill in the destination port        PendingTransactionsIterator it = mPendingTransactions.find(trans);        assert(it != mPendingTransactions.end());        it->second.to = decodeSocket;        phase_type phase = tlm::BEGIN_REQ;        sc_core::sc_time t = sc_core::SC_ZERO_TIME;        // FIXME: No limitation on number of pending transactions        //        All targets (that return false) must support multiple transactions        switch ((*decodeSocket)->nb_transport_fw(*trans, phase, t)) {        case tlm::TLM_ACCEPTED:        case tlm::TLM_UPDATED:          // Transaction not yet finished          if (phase == tlm::BEGIN_REQ) {            // Request phase not yet finished            wait(mEndRequestEvent);          } else if (phase == tlm::END_REQ) {            // Request phase finished, but response phase not yet started            wait(t);          } else if (phase == tlm::BEGIN_RESP) {            mResponsePEQ.notify(*trans, t);            // Not needed to send END_REQ to initiator            continue;          } else { // END_RESP            assert(0); exit(1);          }          // only send END_REQ to initiator if BEGIN_RESP was not already send          if (it->second.from) {            phase = tlm::END_REQ;            t = sc_core::SC_ZERO_TIME;            (*it->second.from)->nb_transport_bw(*trans, phase, t);          }          break;        case tlm::TLM_COMPLETED:          // Transaction finished          mResponsePEQ.notify(*trans, t);          // reset to destination port (we must not send END_RESP to target)          it->second.to = 0;          wait(t);          break;        default:          assert(0); exit(1);        };      }    }  }  void ResponseThread()  {    while (true) {      wait(mResponsePEQ.get_event());      transaction_type* trans;      while ((trans = mResponsePEQ.get_next_transaction())!=0) {        PendingTransactionsIterator it = mPendingTransactions.find(trans);        assert(it != mPendingTransactions.end());        phase_type phase = tlm::BEGIN_RESP;        sc_core::sc_time t = sc_core::SC_ZERO_TIME;        target_socket_type* initiatorSocket = it->second.from;        // if BEGIN_RESP is send first we don't have to send END_REQ anymore        it->second.from = 0;        switch ((*initiatorSocket)->nb_transport_bw(*trans, phase, t)) {        case tlm::TLM_COMPLETED:          // Transaction finished          wait(t);          break;        case tlm::TLM_ACCEPTED:        case tlm::TLM_UPDATED:          // Transaction not yet finished          wait(mEndResponseEvent);          break;        default:          assert(0); exit(1);        };        // forward END_RESP to target        if (it->second.to) {          phase = tlm::END_RESP;          t = sc_core::SC_ZERO_TIME;          #if ( ! NDEBUG )          sync_enum_type r = (*it->second.to)->nb_transport_fw(*trans, phase, t);          #endif /* ! NDEBUG */          assert(r == tlm::TLM_COMPLETED);        }        mPendingTransactions.erase(it);        trans->release();      }    }  }  //  // interface methods  //  sync_enum_type initiatorNBTransport(int initiator_id,                                      transaction_type& trans,                                      phase_type& phase,                                      sc_core::sc_time& t)  {    if (phase == tlm::BEGIN_REQ) {      trans.acquire();      addPendingTransaction(trans, 0, initiator_id);      mRequestPEQ.notify(trans, t);    } else if (phase == tlm::END_RESP) {      mEndResponseEvent.notify(t);      return tlm::TLM_COMPLETED;    } else {      std::cout << "ERROR: '" << name()                << "': Illegal phase received from initiator." << std::endl;      assert(false); exit(1);    }    return tlm::TLM_ACCEPTED;  }  sync_enum_type targetNBTransport(int portId,                                   transaction_type& trans,                                   phase_type& phase,                                   sc_core::sc_time& t)  {    if (phase != tlm::END_REQ && phase != tlm::BEGIN_RESP) {      std::cout << "ERROR: '" << name()                << "': Illegal phase received from target." << std::endl;      assert(false); exit(1);    }    mEndRequestEvent.notify(t);    if (phase == tlm::BEGIN_RESP) {      mResponsePEQ.notify(trans, t);    }    return tlm::TLM_ACCEPTED;  }  unsigned int transportDebug(int initiator_id, transaction_type& trans)  {    unsigned int portId = decode(trans.get_address());    assert(portId < NR_OF_TARGETS);    initiator_socket_type* decodeSocket = &initiator_socket[portId];    trans.set_address( trans.get_address() & getAddressMask(portId) );        return (*decodeSocket)->transport_dbg(trans);  }  bool limitRange(unsigned int portId, sc_dt::uint64& low, sc_dt::uint64& high)  {    sc_dt::uint64 addressOffset = getAddressOffset(portId);    sc_dt::uint64 addressMask = getAddressMask(portId);    if (low > addressMask) {      // Range does not overlap with addressrange for this target      return false;    }    low += addressOffset;    if (high > addressMask) {      high = addressOffset + addressMask;    } else {      high += addressOffset;    }    return true;  }  bool getDMIPointer(int initiator_id,                     transaction_type& trans,                     tlm::tlm_dmi&  dmi_data)  {    // FIXME: DMI not supported for AT bus?    sc_dt::uint64 address = trans.get_address();    unsigned int portId = decode(address);    assert(portId < NR_OF_TARGETS);    initiator_socket_type* decodeSocket = &initiator_socket[portId];    sc_dt::uint64 maskedAddress = address & getAddressMask(portId);    trans.set_address(maskedAddress);    bool result =      (*decodeSocket)->get_direct_mem_ptr(trans, dmi_data);        if (result)    {      // Range must contain address      assert(dmi_data.get_start_address() <= maskedAddress);      assert(dmi_data.get_end_address() >= maskedAddress);    }        // Should always succeed	sc_dt::uint64 start, end;	start = dmi_data.get_start_address();	end = dmi_data.get_end_address();		limitRange(portId, start, end);		dmi_data.set_start_address(start);	dmi_data.set_end_address(end);    return result;  }  void invalidateDMIPointers(int portId,                             sc_dt::uint64 start_range,                             sc_dt::uint64 end_range)  {    // FIXME: probably faster to always invalidate everything?    if ((portId >= 0) && !limitRange(portId, start_range, end_range)) {      // Range does not fall into address range of target      return;    }        for (unsigned int i = 0; i < NR_OF_INITIATORS; ++i) {      (target_socket[i])->invalidate_direct_mem_ptr(start_range, end_range);    }  }private:  void addPendingTransaction(transaction_type& trans,                             initiator_socket_type* to,                             int initiatorId)  {    const ConnectionInfo info = { &target_socket[initiatorId], to };    assert(mPendingTransactions.find(&trans) == mPendingTransactions.end());    mPendingTransactions[&trans] = info;  }private:  struct ConnectionInfo {    target_socket_type* from;    initiator_socket_type* to;  };  typedef std::map<transaction_type*, ConnectionInfo> PendingTransactions;  typedef typename PendingTransactions::iterator PendingTransactionsIterator;  typedef typename PendingTransactions::const_iterator PendingTransactionsConstIterator;private:  PendingTransactions mPendingTransactions;  tlm_utils::peq_with_get<transaction_type> mRequestPEQ;  sc_core::sc_event mBeginRequestEvent;  sc_core::sc_event mEndRequestEvent;  tlm_utils::peq_with_get<transaction_type> mResponsePEQ;  sc_core::sc_event mBeginResponseEvent;  sc_core::sc_event mEndResponseEvent;};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -