📄 whk_e.m
字号:
function main()
SamNum=100;
TestSamNum=101;
SP=0.6;
ErrorLimit=0.9;
% 根据目标函数获得样本输入输出
rand('state',sum(100*clock))
NoiseVar=0.1;
Noise=NoiseVar*randn(1,SamNum);
SamIn=8*rand(1,SamNum)-4;
SamOutNoNoise=1.1*(1-SamIn+2*SamIn.^2).*exp(SamIn.^2/2);
SamOut=SamOutNoNoise+Noise;
TestSamIn=-4:0.08:4;
TestSamOut=1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(TestSamIn.^2/2);
figure
hold on
grid
plot(SamIn,SamOut,'k+')
plot(TestSamIn,TestSamOut,'k--')
xlabel('Input x');
ylabel('Output y');
[InDim,MaxUnitNum]=size(SamIn);
% 计算隐节电输出阵
Distance=dist(SamIn',SamIn);
HiddenUnitOut=radbas(Distance/SP);
PosSelected=[];
VctorsSelected=[];
HiddenUnitOutSelected=[];
ErrHistory=[];
VectorsSelectFrom=HiddenUnitOut;
dd=sum((SamOut.*SamOut)')';
for k=1:MaxUnitNum
% 计算各隐节电输出矢量与目标输出矢量的夹角平方值
PP=sum(VectorsSelectFrom.*VectorsSelectFrom)';
Denominator=dd*PP';
[xxx,SelectedNum]=size(PosSelected);
if SelectedNum>0,
[lin,xxx]=size(Denominator);
Denominator(:,PosSelected)=ones(lin,1);
end
Angle=((SamOut*VectorsSelectFrom).^2)./Denominator;
% 选择具有最大投影的矢量,得到相应的数据中心
[value,pos]=max(Angle);
PosSelected=[PosSelected pos];
% 计算RBF网训练误差
HiddenUnitOutSelected=[HiddenUnitOutSelected;HiddenUnitOut(pos,:)];
HiddenUnitOutEx=[HiddenUnitOutSelected;ones(1,SamNum)];
W2Ex=SamOut*pinv(HiddenUnitOutEx);
W2=W2Ex(:,1:k);
B2=W2Ex(:,k+1);
NNOut=W2*HiddenUnitOutSelected+B2;
SSE=sumsqr(SamOut-NNOut)
% 记录每次增加隐节电后的训练误差
ErrHistory=[ErrHistory SSE];
if SSE<ErrorLimit,break,end
% 作Gram-Schmidt正交化
NewVector=VectorsSelectFrom(:,pos);
ProjectionLen=NewVector'*VectorsSelectFrom/(NewVector'*NewVector);
VectorsSelectFrom=VectorsSelectFrom-NewVector*ProjectionLen;
end
UnitCenters=SamIn(PosSelected);
% 测试
TestDistance=dist(UnitCenters',TestSamIn);
TestHiddenUnitOut=radbas(TestDistance/SP);
TestNNOut=W2*TestHiddenUnitOut+B2;
plot(TestSamIn,TestNNOut,'k-')
k
UnitCenters
W2
B2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -