📄 whk_i.m
字号:
function main()
AllSamNum=100;
TrainSamNum=75;
TestSamNum=AllSamNum-TrainSamNum;
InDim=1;
UnitNum=12;
MaxEpoch=3000;
% 根据目标函数获得样本输入输出
rand('state',sum(100*clock))
NoiseVar=0.3;
Noise=NoiseVar*randn(1,AllSamNum);
AllSamIn=8*rand(1,AllSamNum)-4;
SamOutNoNoise=1.1*(1-AllSamIn+2*AllSamIn.^2).*exp(-AllSamIn.^2/2);
AllSamOut=SamOutNoNoise+Noise;
TrainSamIn=AllSamIn(:,1:TrainSamNum);
TrainSamOut=AllSamOut(:,1:TrainSamNum);
TestSamIn=AllSamIn(:,TrainSamNum+1:AllSamNum);
TestSamOut=AllSamOut(:,TrainSamNum+1:AllSamNum);
TargetSamIn=-4:0.08:4;
TargetSamOut=1.1*(1-TargetSamIn+2*TargetSamIn.^2).*exp(-TargetSamIn.^2/2);
[xxx,TargetSamNum]=size(TargetSamIn);
clf
hold on
grid
plot(AllSamIn,AllSamOut,'k+')
plot(TargetSamIn,TargetSamOut,'k--')
xlabel('Input x');
ylabel('Output y');
Center=8*rand(InDim,UnitNum)-4;
SP=0.2*rand(1,UnitNum)+0.1;
W=0.2*rand(1,UnitNum)-0.1;
OptimalCenter=Center;
OptimalSP=SP;
OptimalW=W;
OptimalStoppedEpoch=0;
OptimalTestError=0
lrCent=0.001;
lrSP=0.001;
lrW=0.001;
TrainErrHistory=[];
TestErrHistory=[];
TestSSE0=100000;
for epoch=1:MaxEpoch
AllDist=dist(Center',TrainSamIn);
SPMat=repmat(SP',1,TrainSamNum);
UnitOut=radbas(AllDist./SPMat);
NetOut=W*UnitOut;
Error=TrainSamOut-NetOut;
% 记录每次权值调整后的训练误差
SSE=sumsqr(Error)
TrainErrHistory=[TrainErrHistory SSE];
% 测试误差计算,记录每次权值调整后的测试误差
TestDistance=dist(Center',TestSamIn);
TestSpreadsMat=repmat(SP',1,TestSamNum);
TestHiddenUnitOut=radbas(TestDistance./TestSpreadsMat);
TestNNOut=W*TestHiddenUnitOut;
TestError=TestSamOut-TestNNOut;
TestSSE=sumsqr(TestError);
TestErrHistory=[TestErrHistory TestSSE];
% 停止学习判断
if(TestSSE>TestSSE0&OptimalStoppedEpoch==0)
OptimalCenter=Center;
OptimalSP=SP;
OptimalW=W;
OptimalStoppedEpoch=epoch;
OptimalTestError=TestSSE;
break;
end
TestSSE0=TestSSE;
for i=1:UnitNum
CentGrad=(TrainSamIn-repmat(Center(:,i),1,TrainSamNum))...
*(Error.*UnitOut(i,:)*W(i)/(SP(i)^2))';
SPGrad=AllDist(i,:).^2*(Error.*UnitOut(i,:)*W(i)/(SP(i)^3))';
WGrad=Error*UnitOut(i,:)';
Center(:,i)=Center(:,i)+lrCent*CentGrad;
SP(i)=SP(i)+lrSP*SPGrad;
W(i)=W(i)+lrW*WGrad;
end
end
% 过拟合结果测试
OverfitTargetDistance=dist(Center',TargetSamIn);
OverfitTargetSpreadsMat=repmat(SP',1,TargetSamNum);
OverfitTargetHiddenUnitOut=radbas(OverfitTargetDistance./OverfitTargetSpreadsMat);
OverfitTargetNNOut=W*OverfitTargetHiddenUnitOut;
plot(TargetSamIn,OverfitTargetNNOut,'b-')
OverfitGeneralizationError=sumsqr(TargetSamIn-OverfitTargetNNOut)
% 最优停止法结果测试
OptimalTargetDistance=dist(OptimalCenter',TargetSamIn);
OptimalTargetSpreadsMat=repmat(OptimalSP',1,TargetSamNum);
OptimalTargetHiddenUnitOut=radbas...
(OptimalTargetDistance./OptimalTargetSpreadsMat);
OptimalTargetNNOut=OptimalW*OptimalTargetHiddenUnitOut;
plot(TargetSamIn,OptimalTargetNNOut,'k-')
OptimalStoppedEpoch
OptimalGeneralizationError=sumsqr(TargetSamIn-OptimalTargetNNOut)
OptimalTestError
pause
% 绘制学习误差曲线
figure;
hold on
grid
[xx,Num]=size(TrainErrHistory);
plot(1:Num,TrainErrHistory/TrainSamNum,'k-');
plot(1:Num,TestErrHistory/TestSamNum,'r-');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -