📄 binarysearchtree.java
字号:
package DataStructures;
// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x
// Comparable find( x ) --> Return item that matches x
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
/**
* Implements an unbalanced binary search tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class BinarySearchTree
{
/**
* Construct the tree.
*/
public BinarySearchTree( )
{
root = null;
}
/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert( Comparable x )
{
root = insert( x, root );
}
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove( Comparable x )
{
root = remove( x, root );
}
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public Comparable findMin( )
{
return elementAt( findMin( root ) );
}
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public Comparable findMax( )
{
return elementAt( findMax( root ) );
}
/**
* Find an item in the tree.
* @param x the item to search for.
* @return the matching item or null if not found.
*/
public Comparable find( Comparable x )
{
return elementAt( find( x, root ) );
}
/**
* Make the tree logically empty.
*/
public void makeEmpty( )
{
root = null;
}
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return root == null;
}
/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.println( "Empty tree" );
else
printTree( root );
}
/**
* Internal method to get element field.
* @param t the node.
* @return the element field or null if t is null.
*/
private Comparable elementAt( BinaryNode t )
{
return t == null ? null : t.element;
}
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the tree.
* @return the new root.
*/
private BinaryNode insert( Comparable x, BinaryNode t )
{
/* 1*/ if( t == null )
/* 2*/ t = new BinaryNode( x, null, null );
/* 3*/ else if( x.compareTo( t.element ) < 0 )
/* 4*/ t.left = insert( x, t.left );
/* 5*/ else if( x.compareTo( t.element ) > 0 )
/* 6*/ t.right = insert( x, t.right );
/* 7*/ else
/* 8*/ ; // Duplicate; do nothing
/* 9*/ return t;
}
/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the tree.
* @return the new root.
*/
private BinaryNode remove( Comparable x, BinaryNode t )
{
if( t == null )
return t; // Item not found; do nothing
if( x.compareTo( t.element ) < 0 )
t.left = remove( x, t.left );
else if( x.compareTo( t.element ) > 0 )
t.right = remove( x, t.right );
else if( t.left != null && t.right != null ) // Two children
{
t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );
}
else
t = ( t.left != null ) ? t.left : t.right;
return t;
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the smallest item.
*/
private BinaryNode findMin( BinaryNode t )
{
if( t == null )
return null;
else if( t.left == null )
return t;
return findMin( t.left );
}
/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the largest item.
*/
private BinaryNode findMax( BinaryNode t )
{
if( t != null )
while( t.right != null )
t = t.right;
return t;
}
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the tree.
* @return node containing the matched item.
*/
private BinaryNode find( Comparable x, BinaryNode t )
{
if( t == null )
return null;
if( x.compareTo( t.element ) < 0 )
return find( x, t.left );
else if( x.compareTo( t.element ) > 0 )
return find( x, t.right );
else
return t; // Match
}
/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the tree.
*/
private void printTree( BinaryNode t )
{
if( t != null )
{
printTree( t.left );
System.out.println( t.element );
printTree( t.right );
}
}
/** The tree root. */
private BinaryNode root;
// Test program
public static void main( String [ ] args )
{
BinarySearchTree t = new BinarySearchTree( );
final int NUMS = 4000;
final int GAP = 37;
System.out.println( "Checking... (no more output means success)" );
for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
t.insert( new MyInteger( i ) );
for( int i = 1; i < NUMS; i+= 2 )
t.remove( new MyInteger( i ) );
if( NUMS < 40 )
t.printTree( );
if( ((MyInteger)(t.findMin( ))).intValue( ) != 2 ||
((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 2 )
System.out.println( "FindMin or FindMax error!" );
for( int i = 2; i < NUMS; i+=2 )
if( ((MyInteger)(t.find( new MyInteger( i ) ))).intValue( ) != i )
System.out.println( "Find error1!" );
for( int i = 1; i < NUMS; i+=2 )
{
if( t.find( new MyInteger( i ) ) != null )
System.out.println( "Find error2!" );
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -