📄 avltree.java
字号:
package DataStructures;
// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x (unimplemented)
// Comparable find( x ) --> Return item that matches x
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
/**
* Implements an AVL tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class AvlTree
{
/**
* Construct the tree.
*/
public AvlTree( )
{
root = null;
}
/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert( Comparable x )
{
root = insert( x, root );
}
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove( Comparable x )
{
System.out.println( "Sorry, remove unimplemented" );
}
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public Comparable findMin( )
{
return elementAt( findMin( root ) );
}
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public Comparable findMax( )
{
return elementAt( findMax( root ) );
}
/**
* Find an item in the tree.
* @param x the item to search for.
* @return the matching item or null if not found.
*/
public Comparable find( Comparable x )
{
return elementAt( find( x, root ) );
}
/**
* Make the tree logically empty.
*/
public void makeEmpty( )
{
root = null;
}
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return root == null;
}
/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.println( "Empty tree" );
else
printTree( root );
}
/**
* Internal method to get element field.
* @param t the node.
* @return the element field or null if t is null.
*/
private Comparable elementAt( AvlNode t )
{
return t == null ? null : t.element;
}
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the tree.
* @return the new root.
*/
private AvlNode insert( Comparable x, AvlNode t )
{
if( t == null )
t = new AvlNode( x, null, null );
else if( x.compareTo( t.element ) < 0 )
{
t.left = insert( x, t.left );
if( height( t.left ) - height( t.right ) == 2 )
if( x.compareTo( t.left.element ) < 0 )
t = rotateWithLeftChild( t );
else
t = doubleWithLeftChild( t );
}
else if( x.compareTo( t.element ) > 0 )
{
t.right = insert( x, t.right );
if( height( t.right ) - height( t.left ) == 2 )
if( x.compareTo( t.right.element ) > 0 )
t = rotateWithRightChild( t );
else
t = doubleWithRightChild( t );
}
else
; // Duplicate; do nothing
t.height = max( height( t.left ), height( t.right ) ) + 1;
return t;
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the smallest item.
*/
private AvlNode findMin( AvlNode t )
{
if( t == null )
return t;
while( t.left != null )
t = t.left;
return t;
}
/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the largest item.
*/
private AvlNode findMax( AvlNode t )
{
if( t == null )
return t;
while( t.right != null )
t = t.right;
return t;
}
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the tree.
* @return node containing the matched item.
*/
private AvlNode find( Comparable x, AvlNode t )
{
while( t != null )
if( x.compareTo( t.element ) < 0 )
t = t.left;
else if( x.compareTo( t.element ) > 0 )
t = t.right;
else
return t; // Match
return null; // No match
}
/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the tree.
*/
private void printTree( AvlNode t )
{
if( t != null )
{
printTree( t.left );
System.out.println( t.element );
printTree( t.right );
}
}
/**
* Return the height of node t, or -1, if null.
*/
private static int height( AvlNode t )
{
return t == null ? -1 : t.height;
}
/**
* Return maximum of lhs and rhs.
*/
private static int max( int lhs, int rhs )
{
return lhs > rhs ? lhs : rhs;
}
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then return new root.
*/
private static AvlNode rotateWithLeftChild( AvlNode k2 )
{
AvlNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
k1.height = max( height( k1.left ), k2.height ) + 1;
return k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then return new root.
*/
private static AvlNode rotateWithRightChild( AvlNode k1 )
{
AvlNode k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
k2.height = max( height( k2.right ), k1.height ) + 1;
return k2;
}
/**
* Double rotate binary tree node: first left child
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then return new root.
*/
private static AvlNode doubleWithLeftChild( AvlNode k3 )
{
k3.left = rotateWithRightChild( k3.left );
return rotateWithLeftChild( k3 );
}
/**
* Double rotate binary tree node: first right child
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then return new root.
*/
private static AvlNode doubleWithRightChild( AvlNode k1 )
{
k1.right = rotateWithLeftChild( k1.right );
return rotateWithRightChild( k1 );
}
/** The tree root. */
private AvlNode root;
// Test program
public static void main( String [ ] args )
{
AvlTree t = new AvlTree( );
final int NUMS = 4000;
final int GAP = 37;
System.out.println( "Checking... (no more output means success)" );
for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
t.insert( new MyInteger( i ) );
if( NUMS < 40 )
t.printTree( );
if( ((MyInteger)(t.findMin( ))).intValue( ) != 1 ||
((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 1 )
System.out.println( "FindMin or FindMax error!" );
for( int i = 1; i < NUMS; i++ )
if( ((MyInteger)(t.find( new MyInteger( i ) ))).intValue( ) != i )
System.out.println( "Find error1!" );
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -