⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgalab_demo_mo_muga.m

📁 这是一个经典的遗传算法标准源程序
💻 M
字号:
% /*M-FILE SCRIPT SGALAB_demo_MO_muGA MMM SGALAB */ %% /*==================================================================================================%  Simple Genetic Algorithm Laboratory Toolbox for Matlab 7.x%%  Copyright 2009 The SxLAB Family - Yi Chen - leo.chen.yi@gmail.com% ====================================================================================================%File description:%       Micro-GA method (muGA)%Input(1):%            options[8]:%                      options(1)-- en-/de-coding method%                                   'Binary' ,'b' :  binary encoding method%                                   'Real'   ,'r' :  real number encoding method%                                   'Literal','l' :  literal permutation encoding method%                                   'Gray'   ,'g' :  Gray encoding method%                                   'DNA'    ,'d' :  DNA encoding method%                                   'Messy'  ,'m'  :  Messy encoding method%%                      options(2)-- selection method%                                    'Roulettewheel', 'Roulette','Wheel','r' : Roulette wheel selection method%                                    'Stochastic','s'                        : Stochastic selection method%                                    'TSP_Roulettewheel','tsp_rw','tsprw'    : TSP Roulette wheel selection%%                      options(3)-- crossover method%                                   'singlepoint','single'%                                   'twopoint','two'%                                   'N = n','n'%                                   'random','r'%                                   'EAX':   Travel Salesman Problem--TSP Operator%                                            Edge Assembly Crossover( EAX ) is to do%                                            Edge Recombination Crossover(ERX) With double edge marker,%                                            Briefly:%                                                    EAX = ERX + Edge_Marker%                                    'CX' :         TSP - Cycle Crossover, CX%                                    'OX' :         TSP - Ordered Crossover operation, OX%                                    'PMX':         TSP - Partially Matched Crossover, PMX%                                    'BOOLMATRIX':  TSP - Matrix Representations and Operators%                      options(4)-- mutation  method%                                   'singlepoint','single'%                                   'twopoint','two'%                                   'N = n','n'%                                   'random','r'%                                   'ReciprocalExchange', (Reciprocal%                                                           Exchange. Swap two cities.)%                                   'Displacement' , Displacement. Select a%                                                    subtour and insert it in a random place.%                                   'Insertion',     Select a city and%                                                    insert it in a random place%                                   'Inversion',      Select two points along the permutation, cut it at these points and re-insert the reversed string.%                                                       (1 2 | 3 4 5 6 | 7 8 9) ? (1 2 | 6 5 4 3 | 7 8 9)%                      options(5)-- constraint_status%                                   'with'    ,'1'--have constraint conditions%                                   'without' ,'0'--have no constraint%                                   conditions%                      options(6)-- Multi-Objects option%                                   'NON_MO'    -- Non-Multi-Objective problem%                                   'VEGA'      -- Vector Evaluated Genetic Algorithms,J. D. Schaffer%                                   'MOGA'      -- Multiobjective Genetic Algorithm (moGA: Fonseca and Fleming, 1993)%                                   'NSGA'      -- Non-dominated Sorting Genetic Algorithm(NSGA Srinivas, N. and K. Deb -1994 )%                                   'NSGAII'    -- Non-dominated Sorting Genetic Algorithm - II%                                   'MUGA',%                                    'Micro', %                                    'Micro-GA',%                                    'microga'%                                    'muga','mu' -- Micro-GA%                      options(7)-- Pareto ranking method%                                   'Goldberg','G'               -- Goldberg's method: rank = rank + 1;%                                   'Fonceca','Fleming','MO','F' -- Fonceca and Fleming's ranking method%                                                                   current rank%                                                                   =  the number of its dominating individulas + 1%                      options(8)-- Save each generation fitness data%                                   '1', -- Save; Pareto front neet this%                                   '0', -- Not Save,only get last results%Appendix comments:%%Usage:%  We can run SGALAB by key-in "SGALAB_demo_MO_muGA" in Matlab command%  window%===================================================================================================%  See Also:         SGALAB_demo_math%                    SGALAB_demo_MO_VEGA%                    SGALAB_demo_MO_NPGA%                    SGALAB_demo_MO_NSGA%                    SGALAB_demo_MO_NSGAII%                    SGALAB_demo_MO_VEGA%                    SGALAB_demo_TSP_13cities%%===================================================================================================%%===================================================================================================%Revision -% Date        Name    Description of Change Email                 % 30-Mar-2009 Chen Yi Initial version      leo.chen.yi@gmail.com  %HISTORY$%==================================================================================================*/% SGALAB_demo_MO_muGA Begin%% set screen% freshclear ;close ('all');warning off% to delete old output_*.txt!del OUTPUT_*.txt% set working path%cd SGALAB_Funcs%      SGA_set_working_paths%% begin to count time during calculatinghome ;tic % timer start >>% data preparation%% open data files%%%input data filesfid1  = fopen('INPUT_min_confines.txt' , 'r' );fid2  = fopen('INPUT_max_confines.txt' , 'r' );fid3  = fopen('INPUT_probability_crossover.txt' , 'r' );fid4  = fopen('INPUT_probability_mutation.txt' , 'r' );fid5  = fopen('INPUT_population.txt' , 'r' );fid6  = fopen('INPUT_steps.txt' , 'r' );fid7  = fopen('INPUT_max_generation.txt' , 'r' );fid8  = fopen('INPUT_convergence_method.txt' , 'r' );fid9  = fopen('INPUT_max_no_change_probability_crossover_generation.txt','r');fid10 = fopen('INPUT_deta_fitness_max.txt','r');fid11 = fopen('INPUT_max_probability_crossover.txt','r');fid12 = fopen('INPUT_probability_crossover_step.txt','r');fid13 = fopen('INPUT_max_no_change_fitness_generation.txt','r');%Micro-GAfid14 = fopen('INPUT_muGA_population_internal_number.txt','r');    % 5, in defaultfid15 = fopen('INPUT_muGA_population_replaceable_number.txt','r'); % 2, in defaultfid16 = fopen('INPUT_muGA_exchangeable_number.txt','r');                         % 2, in defaultfid17 = fopen('INPUT_muGA_cycle.txt','r');                         % 2, in default%output data filesfid101 = fopen('OUTPUT_maxfitness.txt','w+');fid102 = fopen('OUTPUT_minfitness.txt','w+');fid103 = fopen('OUTPUT_meanfitness.txt','w+');fid104 = fopen('OUTPUT_best_result_space.txt','w+');fid105 = fopen('OUTPUT_best_coding_space.txt','w+');fid106 = fopen('OUTPUT_now_generation.txt','w+');fid107 = fopen('OUTPUT_now_probability_crossover.txt','w+');% begin to load data from fileSGALAB_versionSGALAB_status_info%% read data from these filesmin_confines = fscanf( fid1 , '%g' ); min_confines = min_confines' ;max_confines = fscanf( fid2 , '%g' ); max_confines = max_confines';probability_crossover = fscanf( fid3 , '%g' ); probability_mutation = fscanf(fid4,'%g');population = fscanf( fid5 , '%g' );decimal_step = fscanf( fid6 , '%g' );max_generation = fscanf( fid7 , '%g' );convergence_method = fscanf( fid8 , '%g' );max_no_change_probability_crossover_generation = fscanf( fid9 , '%g' );deta_fitness_max = fscanf( fid10 , '%g' );max_probability_crossover = fscanf( fid11,'%g' );probability_crossover_step = fscanf(fid12,'%g');max_no_change_fitness_generation = fscanf(fid13,'%g');%Micro-GA internal populationinternal_number = fscanf(fid14,'%g');replaceable_number = fscanf(fid15,'%g');exchangeable_number =  fscanf(fid16,'%g');muGA_cycle       = fscanf(fid17,'%g');decimal_step = decimal_step' ;now_probability_crossover = probability_crossover;%disp(' >>>>')disp('End Evaluating, List of results :')% Step into SGALAB()options = { 'Binary',    'Roulettewheel',    'singlepoint',    'singlepoint',    '0',    'muga', % will check inside SGA_entry_MO_Pareto_muGA()    'Goldberg',    '1',    '1'}; % Micro-GA option:          %      1 - invoke mutation operator          %      0 - NOT invoke mutation operator % Output[ maxfitness ,...    minfitness ,...    meanfitness ,...    now_generation , ...    now_probability_crossover,...    best_decimal_space ,...    best_coding_space ,...    error_status ]= SGA_entry_MO_Pareto_muGA...    ( options,...    min_confines ,...    max_confines ,...    probability_crossover ,...    probability_mutation ,...    population ,...    decimal_step , ...    max_generation ,...    convergence_method ,...    max_no_change_probability_crossover_generation ,...    deta_fitness_max ,...    max_probability_crossover ,...    max_no_change_fitness_generation ,...    probability_crossover_step,...    internal_number,...    replaceable_number,...    muGA_cycle);if ( error_status ~= 0 )  return ;  end%write data to output files% fprintf( fid8 , '\n the max value of fitness function:\n' );fprintf( fid101 , '%f\n' , maxfitness);%fprintf( fid9, '\n the min value of fitness function:\n');fprintf( fid102 , '%f\n' ,minfitness);%fprintf(fid10,'\n the mean value of fitness function:\n');fprintf(fid103,'%f\n', meanfitness);%fprintf( fid11,'\nthe best decimal space(x1 x2 x3...):\n');fprintf( fid104,'%f\n',best_decimal_space );fprintf( fid105 , '%f\n' , best_coding_space );%fprintf( fid12, '\nthe generation number when end GAs:\n' );fprintf( fid106, '%f\n' , now_generation );fprintf( fid107, '%f\n' , now_probability_crossover );%close filesstatus = fclose( 'all' );  SGALAB_output_info  % timer endtoc% SGALAB_demo_MO_muGA End

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -