📄 genetic_operator.m
字号:
function f = genetic_operator(parent_chromosome,pro,mu,mum);
% This function is utilized to produce offsprings from parent chromosomes.
% The genetic operators corssover and mutation which are carried out with
% slight modifications from the original design. For more information read
% the document enclosed.
%% Copyright (C) 2009 Aravind Seshadri%% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.% % You should have received a copy of the GNU General Public License% along with this program. If not, see <http://www.gnu.org/licenses/>.
[N,M] = size(parent_chromosome);
switch pro
case 1
M = 2;
V = 6;
case 2
M = 3;
V = 12;
end
p = 1;
was_crossover = 0;
was_mutation = 0;
l_limit = 0;
u_limit = 1;
for i = 1 : N
if rand(1) < 0.9
child_1 = [];
child_2 = [];
parent_1 = round(N*rand(1));
if parent_1 < 1
parent_1 = 1;
end
parent_2 = round(N*rand(1));
if parent_2 < 1
parent_2 = 1;
end
while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
parent_2 = round(N*rand(1));
if parent_2 < 1
parent_2 = 1;
end
end
parent_1 = parent_chromosome(parent_1,:);
parent_2 = parent_chromosome(parent_2,:);
for j = 1 : V
% SBX (Simulated Binary Crossover)
% Generate a random number
u(j) = rand(1);
if u(j) <= 0.5
bq(j) = (2*u(j))^(1/(mu+1));
else
bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
end
child_1(j) = ...
0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
child_2(j) = ...
0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
if child_1(j) > u_limit
child_1(j) = u_limit;
elseif child_1(j) < l_limit
child_1(j) = l_limit;
end
if child_2(j) > u_limit
child_2(j) = u_limit;
elseif child_2(j) < l_limit
child_2(j) = l_limit;
end
end
child_1(:,V + 1: M + V) = evaluate_objective(child_1,pro);
child_2(:,V + 1: M + V) = evaluate_objective(child_2,pro);
was_crossover = 1;
was_mutation = 0;
else
parent_3 = round(N*rand(1));
if parent_3 < 1
parent_3 = 1;
end
% Make sure that the mutation does not result in variables out of
% the search space. For both the MOP's the range for decision space
% is [0,1]. In case different variables have different decision
% space each variable can be assigned a range.
child_3 = parent_chromosome(parent_3,:);
for j = 1 : V
r(j) = rand(1);
if r(j) < 0.5
delta(j) = (2*r(j))^(1/(mum+1)) - 1;
else
delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
end
child_3(j) = child_3(j) + delta(j);
if child_3(j) > u_limit
child_3(j) = u_limit;
elseif child_3(j) < l_limit
child_3(j) = l_limit;
end
end
child_3(:,V + 1: M + V) = evaluate_objective(child_3,pro);
was_mutation = 1;
was_crossover = 0;
end
if was_crossover
child(p,:) = child_1;
child(p+1,:) = child_2;
was_cossover = 0;
p = p + 2;
elseif was_mutation
child(p,:) = child_3(1,1 : M + V);
was_mutation = 0;
p = p + 1;
end
end
f = child;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -