📄 动态规划加速原理.cpp
字号:
/*
动态规划加速原理:
许多动态规划求解问题具有类似的递归计算式。
设w(i,j)属于R,1<=i<j<=n。且m(i,j)的递归计算式为:
m(i,i)=0,1<=i<=n
m(i,j) = w(i,j) + min{i<k<=j}{m(i,k-1)+m(k,j)},1<=i<j<=n
最优二叉搜索树问题的动态规划递归式是上述递归式的特殊情形/
*/
/*
O(n^3)的时间算法:
*/
void DynamicProgramming( int n, int **m, int **s, int **w )
{
for( int i = 1; i <= n; ++i )
{
m[i][i] = 0;
s[i][i] = 0;
}
for( int r = 1; r <= n; ++r )
{
for( int i = 1; i <= n - r; ++i )
{
int j = i + r;
w[i][j] = weight(i,j);
m[i][j] = m[i+1][j];
s[i][j] = i;
for( int k = i + 1; k < j; ++k )
{
int t = m[i][k] + m[k+1][j];
if ( t <= m[i][j] )
{
m[i][j] = t;
s[i][j] = k;
}
}
m[i][j] += w[i][j];
}
}
}
/*
算法需要O(n^3)计算时间和O(n^2)空间
*/
/*
四边不等式:
在上述计算m(i,j)的递归式中,当函数w(i,j)满足
w(i,j) + w(i',j') <= w(i',j) + w(i,j'),i<=i'<j<=j'
时,称w满足四边形不等式。
当函数w(i,j)满足w(i',j)<=w(i,j'),i<=i'<j<=j'时,称w关于区间包含关系单调。
对于满足四边形不等式的单调函数w,可推知由递归式定义的函数m(i,j)
也满足四边形不等式,即:
m(i,j) + m(i',j') <= m(i',j) + m(i,j'),i<=i'<j<=j'
这一性质可用数学归纳法证明。我们对四边形不等式中的“长度”l=j'-i应用数学归纳法
当i==i'或j==j'时,不等式显然成立。由此可知,当l<=1时,函数m满足四边形不等式。
下面分两种情形进行归纳证明:
情形1:i<i' = j<j
*/
/*
加速算法:
根据前面的讨论,当w是满足四边形不等式的单调函数时
,函数s(i,j)单调,从而:
min{i<k<=j}{m(i,k-1)+m(k,j)}
= min{s(i,j-1)<=k<=s(i+1,j)}{m(i,k-1)+m(k,j)}
*/
void SpeedDynamicProgramming( int n, int **m, int **s, int **w )
{
for( int i = 1; i <= n; ++i )
{
m[i][i] = 0;
s[i][i] = 0;
}
for( int r = 1; r < n; ++r )
{
for( int i = 1; i <= n - r; ++i )
{
int j = i + r;
int i1 = s[i][j-1] > i ? s[i][j-1] : i;
int j1 = s[i+1][j] > i ? s[i+1][j] : j - 1;
w[i][j] = weight(i,j);
m[i][j] = m[i][i1] + m[i1+1][j];
s[i][j] = i1;
for( int k = i1 + 1; k <= j1; ++k )
{
int t = m[i][k] + m[k+1][j];
if ( t <= m[i][j] )
{
m[i][j] = t;
s[i][j] = k;
}
m[i][j] += w[i][j];
}
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -