📄 p83.f90
字号:
program p83
!------------------------------------------------------------------------------
! program 8.3 diffusion - convection equation on rectangular
! area using 4-node quadrilateral elements
! untransformed solution by Galerkin's method
! implicit integration in time using 'theta' method
!------------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,neq,nband,nn,nr,nip,nodof=1,nod=4,ndof,ndim=2, &
i,j,k,l,iel,nstep,npri,nfix
real::aa,bb,permx,permy,det,theta,dtim,ux,uy,time,part1,part2
character (len=15) :: element = 'quadrilateral'
!-------------------------- dynamic arrays-------------------------------------
real ,allocatable ::kb(:,:),pb(:,:),loads(:),points(:,:),kay(:,:),coord(:,:),&
fun(:),jac(:,:),der(:,:),deriv(:,:),weights(:), &
kp(:,:), pm(:,:), ans(:) ,funny(:,:),g_coord(:,:), &
storpb(:),work(:,:),copy(:,:) , dtkd(:,:)
integer, allocatable :: nf(:,:), g(:) , num(:) , g_num(:,:) ,g_g(:,:) , no(:)
!-------------------------input and initialisation-----------------------------
open (10,file='p83.dat',status= 'old',action='read')
open (11,file='p83.res',status='replace',action='write')
read (10,*) nels,nxe,nn,nip,aa,bb,permx,permy,ux,uy, &
dtim,nstep,theta,npri,nfix
ndof=nod*nodof
allocate ( nf(nodof,nn), points(nip,ndim),weights(nip),kay(ndim,ndim), &
coord(nod,ndim), fun(nod),jac(ndim,ndim),g_coord(ndim,nn) ,&
der(ndim,nod), deriv(ndim,nod), pm(ndof,ndof),g_num(nod,nels), &
kp(ndof,ndof), g(ndof),funny(1,nod),num(nod),g_g(ndof,nels), &
no(nfix),storpb(nfix),dtkd(ndof,ndof))
kay=0.0 ; kay(1,1)=permx; kay(2,2)=permy
call sample(element,points,weights)
nf=1; read(10,*) nr ; if(nr>0)read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf);neq=maxval(nf)
!-------------loop the elements to find nband and set up global arrays---------
nband = 0
elements_1: do iel = 1 , nels
call geometry_4qx(iel,nxe,aa,bb,coord,num)
g_num( : , iel ) = num; g_coord(:,num) = transpose(coord)
call num_to_g(num,nf,g) ; g_g( : , iel ) = g
if(nband<bandwidth(g)) nband = bandwidth(g)
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,4i5)') &
"Element ",k," ",g_num(:,k); end do
allocate(kb(neq,2*nband+1),pb(neq,2*nband+1),loads(0:neq),ans(0:neq),&
work(nband+1,neq),copy(nband+1,neq))
kb = 0.; pb = 0. ; work = .0 ; loads = .0
write(11,'(2(a,i5))') &
"There are ",neq," equations and the half-bandwidth is",nband
!------------------ element integration and assembly------------------------
elements_2: do iel = 1 , nels
num = g_num(: , iel ) ; coord = transpose(g_coord( : , num ))
g = g_g( : , iel ) ; kp=0.0 ; pm=0.0
gauss_pts: do i =1 , nip
call shape_der (der,points,i) ; call shape_fun(fun,points,i)
funny(1,:)=fun(:) ; jac = matmul(der,coord)
det=determinant(jac); call invert(jac); deriv = matmul(jac,der)
do k=1,nod;do l=1,nod
part1=permx*deriv(1,k)*deriv(1,l)+permy*deriv(2,k)*deriv(2,l)
part2=ux*fun(k)*deriv(1,l)+uy*fun(k)*deriv(2,l)
dtkd(k,l)=(part1-part2)*det*weights(i)
end do; end do
kp = kp + dtkd
pm = pm + matmul( transpose(funny),funny)*det*weights(i)
end do gauss_pts
pm = pm/(theta*dtim)
call formtb (kb,kp,g) ; call formtb(pb,pm,g)
end do elements_2
!------------------------specify fixed nodal values --------------------------
pb = pb + kb; kb = pb - kb / theta ; read(10,*) no
pb(no,nband+1) = pb(no,nband+1) + 1.e20 ; storpb = pb(no,nband+1)
!------------------------factorise left hand side-----------------------------
call gauss_band(pb,work)
!-------------------time stepping recursion-----------------------------------
write(11,'(a)') " Time Concentration"
timesteps: do j=1,nstep
time=j*dtim ; copy = work ; call bantmul(kb,loads,ans); ans(0)=.0
if(time<=.2) then ;ans(no)=storpb; else; ans(no) = .0; end if
call solve_band(pb,copy,ans) ; ans(0)=.0; loads=ans
if(j/npri*npri==j)write(11,'(2e12.4)') time,loads(nf(:,3))
end do timesteps
end program p83
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -