📄 programs_17e.m
字号:
% Chapter 17 - Neural Networks.
% Programs_17e - Bifurcation diagram for a simple bistable neuromodule.
% Copyright Birkhauser 2004. Stephen Lynch.
% Bifurcation diagram for a two-neuron module. (See Figure 17.15).
% Vary bias b1.
clear all
format long;
halfN=1000;N=2*halfN+1;N1=1+halfN;Max=10;a=1;alpha=0.3;
b2=3;w11=7;w12=-4;w21=5;start=-5;
x(1)=-10;y(1)=-3;
% Ramp the power up
for n=1:halfN
b1=(start+n*Max/halfN);
x(n+1)=b1+w11*(exp(a*x(n))-exp(-a*x(n)))/(exp(a*x(n))+exp(-a*x(n)))+w12*(exp(alpha*y(n))-exp(-alpha*y(n)))/(exp(alpha*y(n))+exp(-alpha*y(n)));
y(n+1)=b2+w21*(exp(a*x(n))-exp(-a*x(n)))/(exp(a*x(n))+exp(-a*x(n)));
end
% Ramp the power down
for n=N1:N
b1=(start+2*Max-n*Max/halfN);
x(n+1)=b1+w11*(exp(a*x(n))-exp(-a*x(n)))/(exp(a*x(n))+exp(-a*x(n)))+w12*(exp(alpha*y(n))-exp(-alpha*y(n)))/(exp(alpha*y(n))+exp(-alpha*y(n)));
y(n+1)=b2+w21*(exp(a*x(n))-exp(-a*x(n)))/(exp(a*x(n))+exp(-a*x(n)));
end
% Plot the bifurcation diagrams
fsize=14;
subplot(2,1,1)
hold on
set(gca,'xtick',[0:halfN/2:N],'FontSize',fsize);
set(gca,'ytick',[-Max:5:Max],'FontSize',fsize);
plot(x(1:N),'-','MarkerSize',1,'color','k')
xlabel('Number of Iterations','FontSize',fsize);
ylabel('x_n','FontSize',fsize);
hold off
for n=1:halfN
x1(n)=x(N+1-n);
w(n)=start+n*Max/halfN;
end
subplot(2,1,2)
hold on
set(gca,'xtick',[start:5:start+Max],'FontSize',fsize);
set(gca,'ytick',[-Max:5:Max],'FontSize',fsize);
plot(w(1:halfN),x(1:halfN),'-','MarkerSize',1,'color','k');
plot(w(1:halfN),x1(1:halfN),'-','MarkerSize',1,'color','k');
xlabel('b_1','FontSize',fsize);
ylabel('x_n','FontSize',fsize);
hold off
% End of Programs_17e.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -