📄 nr3matlab.h
字号:
/* nr3matlab.h */
// version 0.8
// This file is a version of nr3.h with hooks that
// make it easy to write Matlab mex files, in particular
// ones that use NR3 routines.
// See http://www.nr.com/nr3_matlab.html
#include "mex.h"
#define _CHECKBOUNDS_ 1
// all the system #include's we'll ever need
#include <fstream>
#include <cmath>
#include <complex>
#include <iostream>
#include <iomanip>
#include <vector>
#include <limits>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
#include <typeinfo.h>
using namespace std;
// macro-like inline functions
template<class T>
inline T SQR(const T a) {return a*a;}
template<class T>
inline const T &MAX(const T &a, const T &b)
{return b > a ? (b) : (a);}
inline float MAX(const double &a, const float &b)
{return b > a ? (b) : float(a);}
inline float MAX(const float &a, const double &b)
{return b > a ? float(b) : (a);}
template<class T>
inline const T &MIN(const T &a, const T &b)
{return b < a ? (b) : (a);}
inline float MIN(const double &a, const float &b)
{return b < a ? (b) : float(a);}
inline float MIN(const float &a, const double &b)
{return b < a ? float(b) : (a);}
template<class T>
inline T SIGN(const T &a, const T &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const float &a, const double &b)
{return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);}
inline float SIGN(const double &a, const float &b)
{return (float)(b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a));}
template<class T>
inline void SWAP(T &a, T &b)
{T dum=a; a=b; b=dum;}
// exception handling when executing underneath Matlab
#ifdef _MSC_VER
#define throw(message) \
{char msg[1024]; sprintf_s(msg,1024,"%s in file %s at line %d\n", \
message,__FILE__,__LINE__); mexErrMsgTxt(msg);}
#else
#define throw(message) \
{char msg[1024]; sprintf(msg,"%s in file %s at line %d\n", \
message,__FILE__,__LINE__); mexErrMsgTxt(msg);}
#endif
// basic type names (put here so can use for Matlab stuff)
typedef int Int; // 32 bit integer
typedef unsigned int Uint;
#ifdef _MSC_VER
typedef __int64 Llong; // 64 bit integer
typedef unsigned __int64 Ullong;
#else
typedef long long int Llong; // 64 bit integer
typedef unsigned long long int Ullong;
#endif
typedef char Char; // 8 bit integer
typedef unsigned char Uchar;
typedef double Doub; // default floating type
typedef long double Ldoub;
typedef complex<double> Complex; // default complex type
typedef bool Bool;
// NaN: you should test by verifying that (NaN != NaN) is true (see nr3.h)
static const Doub NaN = numeric_limits<Doub>::quiet_NaN();
// get mxClassID of any type T
template <class T> inline mxClassID mxT() {return mxUNKNOWN_CLASS;}
template <> inline mxClassID mxT<Doub>() {return mxDOUBLE_CLASS;}
template <> inline mxClassID mxT<float>() {return mxSINGLE_CLASS;}
template <> inline mxClassID mxT<Int>() {return mxINT32_CLASS;}
template <> inline mxClassID mxT<Uint>() {return mxUINT32_CLASS;}
template <> inline mxClassID mxT<Char>() {return mxCHAR_CLASS;}
template <> inline mxClassID mxT<Uchar>() {return mxUINT8_CLASS;}
template <> inline mxClassID mxT<Llong>() {return mxINT64_CLASS;}
template <> inline mxClassID mxT<Ullong>() {return mxUINT64_CLASS;}
template <> inline mxClassID mxT<Bool>() {
if (sizeof(Bool)==1) return mxLOGICAL_CLASS;
else throw("bool and mxLOGICAL_CLASS have incompatible sizes");
}
inline mxClassID mxT(const mxArray *p) {return mxGetClassID(p);}
// functions to map Matlab scalars
template <class T>
const T& mxScalar(const mxArray *prhs) {
if (mxGetClassID(prhs) != mxT<T>())
throw("attempt to assign scalar ref to wrong type");
return *(T*)mxGetData(prhs);
}
template <class T>
T& mxScalar(mxArray* &plhs) {
plhs = mxCreateNumericMatrix(1,1,mxT<T>(),mxREAL);
return *(T*)mxGetData(plhs);
}
template <class T>
const T& mxScalar(const char *varname) {
const mxArray* mxptr = mexGetVariablePtr("base",varname);
if (mxptr == NULL) throw("attempt to get nonexistent variable");
if (mxGetClassID(mxptr) != mxT<T>())
throw("attempt to assign scalar ref to wrong type");
return *(T*)mxGetData(mxptr);
}
template <class T>
void mxScalar(T val, const char *varname) {
mxClassID mxclass = mxT<T>();
if (mxclass == mxUNKNOWN_CLASS) throw("no corresponding Matlab type");
mxArray* mxdum = mxCreateNumericMatrix(1,1,mxclass,mxREAL);
*(T*)mxGetData(mxdum) = val;
if (mexPutVariable("base",varname,mxdum))
throw("failed to send data to Matlab variable by name");
mxDestroyArray(mxdum);
}
// Vector and Matrix Classes
template <class T>
class NRvector {
private:
int nn; // size of array. upper index is nn-1
int own; // 1 if own data, 0 if Matlab's
T *v;
public:
NRvector();
explicit NRvector(int n); // Zero-based array
NRvector(int n, const T &a); //initialize to constant value
NRvector(int n, const T *a); // Initialize to array
NRvector(const NRvector &rhs); // Copy constructor
NRvector & operator=(const NRvector &rhs); //assignment
typedef T value_type; // make T available externally
inline T & operator[](const int i); //i'th element
inline const T & operator[](const int i) const;
inline int size() const;
void resize(int newn); // resize (contents not preserved)
void assign(int newn, const T &a); // resize and assign a constant value
~NRvector();
NRvector(const mxArray *prhs); // map Matlab rhs to vector (read-only)
NRvector(int n, mxArray* &plhs); // create Matlab lhs and map to vector
NRvector(const char *varname); // import Matlab variable by name (read-only)
void put(const char *varname); // export vector to a named Matlab variable
};
template <class T>
NRvector<T>::NRvector(const mxArray* prhs) : own(0) {
if (mxGetClassID(prhs) != mxT<T>())
throw("constructing VecDoub from a different Matlab type prhs");
nn = mxGetNumberOfElements(prhs);
v = (T*)mxGetData(prhs);
}
template <class T>
NRvector<T>::NRvector(int n, mxArray* &plhs) : nn(n), own(0) {
mxClassID mxclass = mxT<T>();
if (mxclass == mxUNKNOWN_CLASS) throw("no corresponding Matlab type for plhs");
plhs = mxCreateNumericMatrix(1,nn,mxclass,mxREAL);
v = (T*)mxGetData(plhs);
}
template <class T>
NRvector<T>::NRvector(const char *varname) : own(0) {
const mxArray* mxptr = mexGetVariablePtr("base",varname);
if (mxptr == NULL) throw("attempt to get nonexistent variable");
if (mxGetClassID(mxptr) != mxT<T>())
throw("constructing a VecDoub from a different Matlab type");
nn = mxGetNumberOfElements(mxptr);
v = (T*)mxGetData(mxptr);
}
template <class T>
void NRvector<T>::put(const char *varname) {
mxClassID mxclass = mxT<T>();
if (mxclass == mxUNKNOWN_CLASS) throw("no corresponding Matlab type");
mxArray* mxdum = mxCreateNumericMatrix(1,1,mxclass,mxREAL);
void* sav = mxGetData(mxdum);
mxSetN(mxdum,nn);
mxSetData(mxdum,v);
if (mexPutVariable("base",varname,mxdum))
throw("failed to send data to Matlab variable by name");
mxSetData(mxdum,sav);
mxSetN(mxdum,1);
mxDestroyArray(mxdum);
}
template <class T>
NRvector<T>::NRvector() : nn(0), own(1), v(NULL) {}
template <class T>
NRvector<T>::NRvector(int n) : nn(n), own(1), v(n>0 ? new T[n] : NULL) {}
template <class T>
NRvector<T>::NRvector(int n, const T& a) : nn(n), own(1), v(n>0 ? new T[n] : NULL)
{
for(int i=0; i<n; i++) v[i] = a;
}
template <class T>
NRvector<T>::NRvector(int n, const T *a) : nn(n), own(1), v(n>0 ? new T[n] : NULL)
{
for(int i=0; i<n; i++) v[i] = *a++;
}
template <class T>
NRvector<T>::NRvector(const NRvector<T> &rhs) : nn(rhs.nn), own(1), v(nn>0 ? new T[nn] : NULL)
{
for(int i=0; i<nn; i++) v[i] = rhs[i];
}
template <class T>
NRvector<T> & NRvector<T>::operator=(const NRvector<T> &rhs)
// postcondition: normal assignment via copying has been performed;
// if vector and rhs were different sizes, vector
// has been resized to match the size of rhs
{
if (this != &rhs)
{
if (nn != rhs.nn) {
if (!own) throw("resize of mxArray by assignment not allowed");
if (v != NULL) delete [] (v);
nn=rhs.nn;
v= nn>0 ? new T[nn] : NULL;
}
for (int i=0; i<nn; i++)
v[i]=rhs[i];
}
return *this;
}
template <class T>
inline T & NRvector<T>::operator[](const int i) //subscripting
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRvector subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline const T & NRvector<T>::operator[](const int i) const //subscripting
{
#ifdef _CHECKBOUNDS_
if (i<0 || i>=nn) {
throw("NRvector subscript out of bounds");
}
#endif
return v[i];
}
template <class T>
inline int NRvector<T>::size() const
{
return nn;
}
template <class T>
void NRvector<T>::resize(int newn)
{
if (newn != nn) {
if (!own) throw("resize of mxArray not allowed");
if (v != NULL) delete[] (v);
nn = newn;
v = nn > 0 ? new T[nn] : NULL;
}
}
template <class T>
void NRvector<T>::assign(int newn, const T& a)
{
if (newn != nn) {
if (!own) throw("resize of mxArray by assign method not allowed");
if (v != NULL) delete[] (v);
nn = newn;
v = nn > 0 ? new T[nn] : NULL;
}
for (int i=0;i<nn;i++) v[i] = a;
}
template <class T>
NRvector<T>::~NRvector()
{
if (own && v != NULL) delete[] (v);
}
// end of NRvector definitions
template <class T>
class NRmatrix {
private:
int nn;
int mm;
int own; // owned by self 1, vs Matlab 0
T **v;
public:
NRmatrix();
NRmatrix(int n, int m); // Zero-based array
NRmatrix(int n, int m, const T &a); //Initialize to constant
NRmatrix(int n, int m, const T *a); // Initialize to array
NRmatrix(const NRmatrix &rhs); // Copy constructor
NRmatrix & operator=(const NRmatrix &rhs); //assignment
typedef T value_type; // make T available externally
inline T* operator[](const int i); //subscripting: pointer to row i
inline const T* operator[](const int i) const;
inline int nrows() const;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -