📄 rfc2888.txt
字号:
| DMZ - Network ------------------------------------------------------------ | | | +--+ +--+ +----------+ |__| |__| | Firewall | /____\ /____\ +----------+ DMZ-Name DMZ-Web ... | Server Server etc. | LAN | ------------------------------------ | | +----------+ +------------------+ | LNS | | Security Gateway | | Server | | (SGW) | +----------+ +------------------+ | ------------------ ( ) ( Internal Network ) ( (Private to the ) ( enterprise) ) (_________________ ) Figure 2: Security Model based on Firewall and Security Gateway In order to allow employee dial-in over the Internet, an LNS may be placed behind a firewall, and the firewall may be configured to allow UDP access to the LNS from the Internet. Note, it may not be possible to know all the IP addresses of the LACs located on the Internet at configuration time. Hence, the need to allow UDP access from any node on the Internet. The LNS may be configured to process only the L2TP packets and drop any UDP packets that are not L2TP.Srisuresh Informational [Page 7]RFC 2888 Secure Remote Access with L2TP August 2000 Such a configuration allows remote access over the Internet. However, the above setup is prone to a variety of security attacks over the Internet. It is easy for someone on the Internet to steal a remote access session and gain access to precious resources of the enterprise. Hence it is important that all packets are preserved with IPsec to a security Gateway (SGW) behind the LNS, so the Security Gateway will not allow IP packets into corporate network unless it can authenticate the same. The trust model of secure remote access assumes that the enterprise and the end user are trusted domains. Everything in between is not trusted. Any examination of the end-to-end packets by the nodes enroute would violate this trust model. From this perspective, even the LAC node enroute must not be trusted with the end-to-end IP packets. Hence, location and operation of LAC is not relevant for the discussion on security. On the other hand, location and operation of LNS and the Security Gateway (SGW) are precisely the basis for discussion. Having security processing done on an independent Security gateway has the following shortcomings. 1. Given the trust model for remote access, the SGW must be configured with a set of security profiles, access control lists and IKE authentication parameters for each user. This mandates an independent provisioning of security parameters on a per-user basis. This may not be able to take advantage of the user-centric provisioning on RADIUS, used by the LNS node. 2. Unlike the LNS, SGW may not be in the routing path of remote access packets. I.e., there is no guarantee that the egress IP packets will go through the chain of SGW and LNS before they are delivered to remote user. As a result, packets may be subject to IPSec in one direction, but not in the other. This can be a significant threat to the remote access trust model. 3. Lastly, the SGW node does not have a way to know when a remote user node(s) simply died or the LAC-LNS tunnel failed. Being unable to delete the SAs for users that no longer exist could drain the resources of the SGW. Further, the LNS cannot even communicate the user going away to the SGW because, the SGW maintains its peer nodes based on IKE user ID, which could be different the user IDs employed by the LNS node.Srisuresh Informational [Page 8]RFC 2888 Secure Remote Access with L2TP August 20005. Secure Remote Access Combining the functions of IPsec Security Gateway and LNS into a single system promises to offer a viable solution for secure remote access. By doing this, remote access clients will use a single node as both (a) PPP termination point providing NAS service, and (b) the Security gateway node into the enterprise. We will refer this node as "Secure Remote Access Server" (SRAS). The SRAS can benefit greatly from the confluence of PPP session and IPsec tunnel end points. PPP session monitoring capability of L2TP directly translates to being able to monitor IPsec tunnels. Radius based user authorization ability could be used to configure the security characteristics for IPsec tunnel. This includes setting access control filters and security preferences specific to each user. This may also be extended to configuring IKE authentication and other negotiation parameters, when automated key exchange is solicited. Security attributes that may be defined in Radius are discussed in detail in section 7. Needless to say, the centralized provisioning capability and scalability of Radius helps in the configuration of IPsec. As for remote access, the benefit is one of IPsec security as befitting the trust model solicited by enterprises for the end-to-end IP packets traversing the Internet. You may use simply AH where there is no fear of external eaves-dropping, but you simply need to authenticate packet data, including the source of packet. You may use ESP (including ESP-authentication), where there is no trust of the network and you do not want to permit eaves-dropping on corporate activities. Operation of SRAS requires that the firewall be configured to permit UDP traffic into the SRAS node. The SRAS node in turn will process just the L2TP packets and drop the rest. Further, the SRAS will require all IP packets embedded within PPP to be one of AH and ESP packets, directed to itself. In addition, the SRAS will also permit IKE UDP packets (with source and destination ports sets to 500) directed to itself in order to perform IKE negotiation and generate IPsec keys dynamically. All other IP packets embedded within PPP will be dropped. This enforces the security policy for the enterprise by permitting only the secure remote access packets into the enterprise. When a PPP session is dropped, the IPsec and ISAKMP SAs associated with the remote access user are dropped from the SRAS. All the shortcomings listed in the previous section with LNS and SGW on two systems disappear withe Secure Remote Access Server. Figure 3 below is a typical description of an enterprise supporting remote access users using SRAS system.Srisuresh Informational [Page 9]RFC 2888 Secure Remote Access with L2TP August 2000 ------------ Remote Access +-------------+ ( ) +--+______ Link | Local Access| ( ) |__| /___________| Concentrator|----( Internet ) /____\ | (LAC) | ( ) RA-Host +-------------+ (____________) WAN | .........|\|.... | +-----------------+ |Enterprise Router| +-----------------+ | | DMZ - Network ------------------------------------------ | | | +--+ +--+ +----------+ |__| |__| | Firewall | /____\ /____\ +----------+ DMZ-Name DMZ-Web ... | Server Server etc. | LAN | ------------------------------------ | +---------------+ | Secure Remote | | Access Server | | (SRAS) | +---------------+ | --------------------- ( ) +--+ ( Internal Network ) |__|------( (Private to the ) /____\ ( enterprise) ) Ent-Host (______________________) Figure 3: Secure Remote Access Server operation in an Enterprise The following is an illustration of secure remote access data flow as end-to-end IP packets traverse the Internet and the SRAS. The example shows IP packet tunneling and IPsec transformation as packets are exchanged between a remote Access host (RA-Host) and a host within the enterprise (say, Ent-Host).Srisuresh Informational [Page 10]RFC 2888 Secure Remote Access with L2TP August 2000 Note, the IP packets originating from or directed to RA-Host are shown within PPP encapsulation, whereas, all other packets are shown simply as IP packets. It is done this way to highlight the PPP packets encapsulated within L2TP tunnel. The PPP headers below are identified by their logical source and destination in parenthesis. Note, however, the source and recipient information of the PPP data is not a part of PPP header. This is described thus, just for clarity. In the case of an L2TP tunnel, the L2TP header carries the PPP session ID, which indirectly identifies the PPP end points to the LAC and the LNS. Lastly, the IPsec Headers section below include the tunneling overhead and the AH/ESP headers that are attached to the tunnel.Srisuresh Informational [Page 11]RFC 2888 Secure Remote Access with L2TP August 2000 RA-Host to Ent-Host Packet traversal: ------------------------------------ RA-Host LAC SRAS Ent-Host ===================================================================== +----------------------+ | PPP Header | | (RA-Host ->SRAS) | +----------------------+ | Tunnel-Mode IPsec | | Hdr(s)(RA-Host->SRAS)| +----------------------+ | End-to-end IP packet | | transformed as needed| | (RA-Host->Ent-Host) | +----------------------+ ----------------------> +----------------------+ | IP Header | | (LAC->SRAS) | +----------------------+ | UDP Header | +----------------------+ | L2TP Header | | (incl. PPP Sess-ID) | +----------------------+ | PPP Header | | (RA-Host ->SRAS) | +----------------------+ | Tunnel-Mode IPsec | | Hdr(s)(RA-Host->SRAS)| +----------------------+ | End-to-end IP packet | | transformed as needed| | (RA-Host->Ent-Host) | +----------------------+ ----------------------> +----------------------+ | End-to-end IP packet | | (RA-Host->Ent-Host) | +----------------------+ ---------------------->Srisuresh Informational [Page 12]RFC 2888 Secure Remote Access with L2TP August 2000 Ent-Host to RA-Host Packet traversal: ------------------------------------ Ent-Host SRAS LAC RA-Host ===================================================================== +----------------------+ | End-to-end IP packet | | (Ent-Host->Ra-Host) | +----------------------+ ----------------------> +----------------------+ | IP Header | | (SRAS->LAC) | +----------------------+ | UDP Header | +----------------------+ | L2TP Header | | (incl. PPP Sess-ID) | +----------------------+ | PPP Header | | (SRAS->RA-Host) | +----------------------+ | Tunnel-Mode IPsec | | Hdr(s)(SRAS->RA-Host)| +----------------------+ | End-to-end IP packet | | transformed as needed| | (Ent-Host->RA-Host) | +----------------------+ ----------------------> +----------------------+
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -