📄 rfc2834.txt
字号:
MUST emulate broadcast through an IP broadcast emulation server. A HIPPI IP broadcast server (PIBES) is an extension to the HARP server and only makes sense when the LIS does not inherently support broadcast. The PIBES allows common upper layer networking protocols (RIP, TCP, UDP, etc.) to access IP LIS broadcast.7.1 Protocol for an IP Broadcast Emulation Server - PIBES To emulate broadcast within an LIS, a PIBES SHALL use the currently valid HARP table of the HARP server as a list of addresses called the target list. The broadcast server SHALL validate that all incoming messages have a source address which corresponds to an address in the target list. Only messages addressed to the IP LIS broadcast addresses, multicast address or 255.255.255.255 are considered valid messages for broadcasting. Invalid messages MUST be dropped. All valid incoming messages shall be forwarded to all addresses in the target list.Pittet Standards Track [Page 23]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 2000 It is RECOMMENDED that the broadcast server run on the same port as the HARP server since this memo does not define the protocol for exchanging the valid HARP table. The default address to use for the broadcast address is the operational HARP server address.7.2 IP Broadcast Address This memo only defines IP broadcast. It is independent of the underlying hardware addressing and broadcast capabilities. Any port can differentiate between IP traffic directed to itself and a broadcast message sent to it by looking at the IP address. All IP broadcast messages SHALL use the IP LIS broadcast address or. It is RECOMMENDED that the PIBES run on the same port as the HARP server. In that case, the PIBES SHALL use the same address as the HARP server.7.3 IP Multicast Address HIPPI does not directly support multicast address, therefore there are no mappings available from IP multicast addresses to HIPPI multicast services. Current IP multicast implementations (i.e. MBONE and IP tunneling, see [9]) will continue to operate over HIPPI-based logical IP subnets if all IP multicast packets are sent using the same algorithm as if the packet were being sent to 255.255.255.255.7.4 A Note on Broadcast Emulation Performance It is obvious that a broadcast emulation service (as defined in section 7.1) has an inherent performance limit. In an LIS with n ports, the upper bound on the bandwidth that such a service can broadcast is: (total bandwidth)/(n+1) since each message must first enter the broadcast server, accounting for the additional 1, and then be sent to all n ports. The broadcast server could forward the message destined to the port on which it runs internally, thus reducing (n+1) to (n) in a first optimization. This service is adequate for the standard networking protocols such as RIP, OSPF, NIS, etc. since they usually use a small fraction of the network bandwidth for broadcast. For these purposes, the broadcast emulation server as defined in this memo allows the HIPPI network to look similar to an Ethernet network to the higher layers. It is further obvious that such an emulation cannot be used to broadcast high bandwidth traffic. For such a solution, hardware support for true broadcast is required.Pittet Standards Track [Page 24]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 20008 HARP for Scheduled Transfer Protocol[17] This RFC also applies for resolving addresses used with Scheduled Transfer (STP) over HIPPI-800 instead of IP. This RFC's message types and algorithms can be used for STP (since STP uses Internet Addresses) as long as there is also an IP over HIPPI implementation on all of the ports.9 Discovery of One's Own Switch Address This HARP specification assumes that each port has prior knowledge of its own hardware address. This address may be manually configured, by means outside the scope of this memo or a port may discover its own logical address through the algorithm described below. Ports are NOT REQUIRED to implement this switch address discovery protocol but are encouraged to do so since it reduces the administrative overhead. The algorithm presented in this section is based on John Renwick's work as detailed in RFC-1374 [14]. The concept of the discovery process is to scan all possible switch addresses. The messages that are received will be the ones containing one of our switch addresses. If a port implements this algorithm it SHALL form a HIPPI-LE message as defined in HIPPI-LE: containing an Self_Address_Resolution_Request (see [3]) PDU Type, a Source_IEEE_Address and Destination_IEEE_Address (set to the correct ULA for the sender), and the Source_Switch_Address and Destination_Switch_Address. This self address resolution message uses the same HIPPI-LE message format as described in HIPPI-SC and HIPPI-LE: the Self Address Resolution Request PDU and Self Address Resolution Response PDU type codes and no piggybacked ULP data. The HIPPI-LE header contents for the request are: HIPPI-LE Message_Type is = 3, Self Addr. Resolution Request HIPPI-LE Destination_Address_Type = 0 (undefined) HIPPI-LE Destination_Switch_Address = X (X element scan range) HIPPI-LE Source_Address_Type = 0 (undefined) HIPPI-LE Source_Switch_Address = 0 (unknown) HIPPI-LE Destination_IEEE_Address = 0 HIPPI-LE Source_IEEE_Address = my ULA There is no D2 data; the message contains only the HIPPI-FP header and D1_Area with the HIPPI-LE header.Pittet Standards Track [Page 25]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 2000 Ports SHALL start the scan with a configurable logical address (default 0x000) and increment the value for by one for each subsequent try. The port SHALL continue until it sees its own self address resolution request or it has reached the end, which may be another configurable value (default 0xFFF). It is RECOMMENDED that the range of addresses to scan be configurable since some networks have equipment that does not gracefully handle HIPPI-LE messages. After a port sends the[se] request[s], two positive outcomes are possible: o the port receives its own request(s), and obtains one of its own Switch Address, or o the port receives an AR_S_Response with the Destination_Switch_Address filled in.10 Security Considerations HARP messages are not authenticated which is a potentially flaw that could allow corrupt information to be introduced into the server system. There are other known security issues relating to port impersonation via the address resolution protocols used in the Internet [8]. No special security mechanisms have been added to the address resolution mechanism defined here for use with networks using HARP. Not all of the security issues relating to ARP over HIPPI are clearly understood at this time. However, given the security hole ARP allows, other concerns are probably minor.11 Open Issues Synchronization and coordination of multiple HARP servers and multiple broadcast servers are left for further study.12 HARP Examples Assume a HIPPI-SC switch is installed with three connected ports: x, y, and a. Each port has a unique hardware address that consists of Switch Address (e.g. SWx, SWy, SWa) and unique ULA (ULAx, ULAy and ULAa, respectively). There is a HARP server connected to a switch port that is mapped to the address HWa (SWa, ULAa), this address is the authoritative HIPPI hardware address in the HRAL (HARP Request Address List).Pittet Standards Track [Page 26]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 2000 The HARP server's table is empty. Ports X and Y each know their own hardware address. Eventually they want to talk to each other; each knows the other's IP address (from the port database) but neither knows the other's ULA or Switch Address. Both ports X and Y have their interfaces configured DOWN. NOTE: The LLC, SNAP, Ethertype, HIPPI-LE Message Type, ar$hrd, ar$pro, ar$pln fields are left out from the examples below since they are constant. Likewise, ar$rhl = ar$thl = 9 are omitted since these are all HIPPI-800 examples.12.1 Registration Phase of Client Y on Non-broadcast Hardware Port Y starts: its HARP table entry state for the server: PENDING 1. Port Y initiates its interface and sends an InHARP_REQUEST to HWa after starting a table entry for HWa. HIPPI-LE Destination_Switch_Address = SWa HIPPI-LE Source_Switch_Address = SWy HIPPI-LE Destination_IEEE_Address = ULAa HIPPI-LE Source_IEEE_Address = ULAy HARP ar$op = 8 (InHARP_REQUEST) HARP ar$rpa = IPy HARP ar$tpa = 0 ** HARP ar$rha = SWy ULAy HARP ar$tha = SWa ULAa ** is what we would like to find out 2. HARP server receives Y's InHARP_REQUEST, it examines the source addresses and scans its tables for a match. Since this is the first time Y connects to this server there is no entry and one will be created and time stamped with the information from the InHARP_REQUEST. The HARP server will then send a InHARP_REPLY including its IP address. HIPPI-LE Destination_Switch_Address = SWy HIPPI-LE Source_Switch_Address = SWa HIPPI-LE Destination_IEEE_Address = ULAy HIPPI-LE Source_IEEE_Address = ULAa HARP ar$op = 9 (InHARP_REPLY) HARP ar$rpa = IPs * HARP ar$tpa = IPy HARP ar$rha = SWa ULAa HARP ar$tha = SWy ULAy * answer we were looking forPittet Standards Track [Page 27]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 2000 3. Port Y examines the incoming InHARP_REPLY, completes its table entry for the HARP server. The client's HARP table entry for the server now passes into the VALID state and is usable for regular HARP traffic. Receiving this reply ensures that the HARP server has properly registered the client.12.2 Registration Phase of Client Y on Broadcast Capable Hardware If there is a broadcast capable network then the authoritative address in the HRAL would be mapped to the broadcast address, HWb = SWb, ULAb (likely 0xFE1 and FF:FF:FF:FF:FF:FF). Port Y starts: its HARP table entry state for HWa: PENDING 1. Port Y initiates its interface and sends an InHARP_REQUEST to HWa, in this example the broadcast address, after starting a table entry. HIPPI-LE Destination_Switch_Address = SWb HIPPI-LE Source_Switch_Address = SWy HIPPI-LE Destination_IEEE_Address = ULAb HIPPI-LE Source_IEEE_Address = ULAy HARP ar$op = 8 (InHARP_REQUEST) HARP ar$rpa = IPy HARP ar$tpa = 0 ** HARP ar$rha = SWy ULAy HARP ar$tha = SWb ULAb ** is what we would like to find out 2. Since the network is a broadcast network, client Y will receive a copy of its InHARP_REQUEST. Client Y examines the source addresses. Since they are the same as what Y filled in the InHARP_REQUEST, Y can deduce that it is connected to a broadcast medium. Port Y completes its table entry for HWa. This entry will not timeout since it is considered unlikely for a particular underlying hardware type to change between broadcast and non- broadcast; therefore this mapping will never change.12.3 Operational Phase (phase II) The Operational Phase of the HARP protocol as specified in this memo is the same for both broadcast and non-broadcast capable HIPPI hardware. The authoritative address in the HRAL for this example will be HWa: <SWa, ULAa> and IPs for simplicity reasons.Pittet Standards Track [Page 28]RFC 2834 ARP and IP Broadcast over HIPPI-800 May 200012.3.1 Standard successful HARP_Resolve example Assume the same process (steps 1-3 of section 10.1) happened for por
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -