📄 rfc1829.txt
字号:
which identifies the protocol header that begins the payload. Provide an Initialization Vector (IV) of the size indicated by the SPI. Encrypt the payload with DES in CBC mode, producing a ciphertext of the same length. Octets are mapped to DES blocks in network order (most significant octet first) [RFC-1700]. Octet 0 (modulo 8) of the payload corresponds to bits 1-8 of the 64-bit DES input block, while octet 7 (modulo 8) corresponds to bits 57-64 of the DES input block. Construct an appropriate IP datagram for the target Destination, with the indicated SPI, IV, and payload. The Total/Payload Length in the encapsulating IP Header reflects the length of the encrypted data, plus the SPI, IV, padding, Pad Length, and Payload Type octets.3.2. Decryption First, the SPI field is removed and examined. This is used as an index into the local Security Parameter table to find the negotiatedKarn, Metzger & Simpson Standards Track [Page 5]RFC 1829 ESP DES-CBC August 1995 parameters and decryption key. The negotiated form of the IV determines the size of the IV field. These octets are removed, and an appropriate 64-bit IV value is constructed. The encrypted part of the payload is decrypted using DES in the CBC mode. The Payload Type is removed and examined. If it is unrecognized, the payload is discarded with an appropriate ICMP message. The Pad Length is removed and examined. The specified number of pad octets are removed from the end of the decrypted payload, and the IP Total/Payload Length is adjusted accordingly. The IP Header(s) and the remaining portion of the decrypted payload are passed to the protocol receive routine specified by the Payload Type field.Security Considerations Users need to understand that the quality of the security provided by this specification depends completely on the strength of the DES algorithm, the correctness of that algorithm's implementation, the security of the key management mechanism and its implementation, the strength of the key [CN94], and upon the correctness of the implementations in all of the participating nodes. Among other considerations, applications may wish to take care not to select weak keys, although the odds of picking one at random are low [Schneier94, p 233]. The cut and paste attack described by [Bell95] exploits the nature of all Cipher Block Chaining algorithms. When a block is damaged in transmission, on decryption both it and the following block will be garbled by the decryption process, but all subsequent blocks will be decrypted correctly. If an attacker has legitimate access to the same key, this feature can be used to insert or replay previously encrypted data of other users of the same engine, revealing the plaintext. The usual (ICMP, TCP, UDP) transport checksum can detect this attack, but on its own is not considered cryptographically strong. In this situation, user or connection oriented integrity checking is needed [RFC-1826]. At the time of writing of this document, [BS93] demonstrated aKarn, Metzger & Simpson Standards Track [Page 6]RFC 1829 ESP DES-CBC August 1995 differential cryptanalysis based chosen-plaintext attack requiring 2^47 plaintext-ciphertext pairs, and [Matsui94] demonstrated a linear cryptanalysis based known-plaintext attack requiring only 2^43 plaintext-ciphertext pairs. Although these attacks are not considered practical, they must be taken into account. More disturbingly, [Weiner94] has shown the design of a DES cracking machine costing $1 Million that can crack one key every 3.5 hours. This is an extremely practical attack. One or two blocks of known plaintext suffice to recover a DES key. Because IP datagrams typically begin with a block of known and/or guessable header text, frequent key changes will not protect against this attack. It is suggested that DES is not a good encryption algorithm for the protection of even moderate value information in the face of such equipment. Triple DES is probably a better choice for such purposes. However, despite these potential risks, the level of privacy provided by use of ESP DES-CBC in the Internet environment is far greater than sending the datagram as cleartext.Acknowledgements This document was reviewed by the IP Security Working Group of the Internet Engineering Task Force (IETF). Comments should be submitted to the ipsec@ans.net mailing list. Some of the text of this specification was derived from work by Randall Atkinson for the SIP, SIPP, and IPv6 Working Groups. The use of DES for confidentiality is closely modeled on the work done for SNMPv2 [RFC-1446]. Steve Bellovin, Steve Deering, Karl Fox, Charles Lynn, Craig Metz, Dave Mihelcic and Jeffrey Schiller provided useful critiques of earlier versions of this draft.Karn, Metzger & Simpson Standards Track [Page 7]RFC 1829 ESP DES-CBC August 1995References [Bell95] Bellovin, S., "An Issue With DES-CBC When Used Without Strong Integrity", Proceedings of the 32nd IETF, Danvers, MA, April 1995. [BS93] Biham, E., and Shamir, A., "Differential Cryptanalysis of the Data Encryption Standard", Berlin: Springer-Verlag, 1993. [CN94] Carroll, J.M., and Nudiati, S., "On Weak Keys and Weak Data: Foiling the Two Nemeses", Cryptologia, Vol. 18 No. 23 pp. 253-280, July 1994. [FIPS-46] US National Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 46, January 1977. [FIPS-46-1] US National Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 46-1, January 1988. [FIPS-74] US National Bureau of Standards, "Guidelines for Implementing and Using the Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 74, April 1981. [FIPS-81] US National Bureau of Standards, "DES Modes of Operation" Federal Information Processing Standard (FIPS) Publication 81, December 1980. [Matsui94] Matsui, M., "Linear Cryptanalysis method dor DES Cipher," Advances in Cryptology -- Eurocrypt '93 Proceedings, Berlin: Springer-Verlag, 1994. [RFC-1446] Galvin, J., and McCloghrie, K., "Security Protocols for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC-1446, DDN Network Information Center, April 1993. [RFC-1700] Reynolds, J., and Postel, J., "Assigned Numbers", STD 2,Karn, Metzger & Simpson Standards Track [Page 8]RFC 1829 ESP DES-CBC August 1995 RFC-1700, USC/Information Sciences Institute, October 1994. [RFC-1800] Postel, J., "Internet Official Protocol Standards", STD 1, RFC-1800, USC/Information Sciences Institute, July 1995. [RFC-1825] Atkinson, R., "Security Architecture for the Internet Protocol", RFC-1825, Naval Research Laboratory, July 1995. [RFC-1826] Atkinson, R., "IP Authentication Header", RFC-1826, Naval Research Laboratory, July 1995. [RFC-1827] Atkinson, R., "IP Encapsulating Security Protocol (ESP)", RFC-1827, Naval Research Laboratory, July 1995. [Schneier94] Schneier, B., "Applied Cryptography", John Wiley & Sons, New York, NY, 1994. ISBN 0-471-59756-2 [Weiner94] Wiener, M.J., "Efficient DES Key Search", School of Computer Science, Carleton University, Ottawa, Canada, TR-244, May 1994. Presented at the Rump Session of Crypto '93.Karn, Metzger & Simpson Standards Track [Page 9]RFC 1829 ESP DES-CBC August 1995Author's Address Questions about this memo can also be directed to: Phil Karn Qualcomm, Inc. 6455 Lusk Blvd. San Diego, California 92121-2779 karn@unix.ka9q.ampr.org Perry Metzger Piermont Information Systems Inc. 160 Cabrini Blvd., Suite #2 New York, NY 10033 perry@piermont.com William Allen Simpson Daydreamer Computer Systems Consulting Services 1384 Fontaine Madison Heights, Michigan 48071 Bill.Simpson@um.cc.umich.edu bsimpson@MorningStar.comKarn, Metzger & Simpson Standards Track [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -