📄 rfc2607.txt
字号:
Network Working Group B. AbobaRequest for Comments: 2607 Microsoft CorporationCategory: Informational J. Vollbrecht Merit Networks, Inc. June 1999 Proxy Chaining and Policy Implementation in RoamingStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.1. Abstract This document describes how proxy chaining and policy implementation can be supported in roaming systems. The mechanisms described in this document are in current use. However, as noted in the security considerations section, the techniques outlined in this document are vulnerable to attack from external parties as well as susceptible to fraud perpetrated by the roaming partners themselves. As a result, such methods are not suitable for wide-scale deployment on the Internet.2. Terminology This document frequently uses the following terms: Network Access Server The Network Access Server (NAS) is the device that clients contact in order to get access to the network. RADIUS server This is a server which provides for authentication/authorization via the protocol described in [3], and for accounting as described in [4].Aboba & Vollbrecht Informational [Page 1]RFC 2607 Proxy Chaining and Policy in Roaming June 1999 RADIUS proxy In order to provide for the routing of RADIUS authentication and accounting requests, a RADIUS proxy can be employed. To the NAS, the RADIUS proxy appears to act as a RADIUS server, and to the RADIUS server, the proxy appears to act as a RADIUS client. Network Access Identifier In order to provide for the routing of RADIUS authentication and accounting requests, the userID field used in PPP (known as the Network Access Identifier or NAI) and in the subsequent RADIUS authentication and accounting requests, can contain structure. This structure provides a means by which the RADIUS proxy will locate the RADIUS server that is to receive the request. The NAI is defined in [6]. Roaming relationships Roaming relationships include relationships between companies and ISPs, relationships among peer ISPs within a roaming association, and relationships between an ISP and a roaming consortia. Together, the set of relationships forming a path between a local ISP's authentication proxy and the home authentication server is known as the roaming relationship path.3. Requirements language In this document, the key words "MAY", "MUST, "MUST NOT", "optional", "recommended", "SHOULD", and "SHOULD NOT", are to be interpreted as described in [5].4. Introduction Today, as described in [1], proxy chaining is widely deployed for the purposes of providing roaming services. In such systems, authentication/authorization and accounting packets are routed between a NAS device and a home server through a series of proxies. Consultation of the home server is required for password-based authentication, since the home server maintains the password database and thus it is necessary for the NAS to communicate with the home authentication server in order to verify the user's identity.Aboba & Vollbrecht Informational [Page 2]RFC 2607 Proxy Chaining and Policy in Roaming June 19994.1. Advantages of proxy chaining Proxies serve a number of functions in roaming, including: Scalability improvement Authentication forwarding Capabilities adjustment Policy implementation Accounting reliability improvement Atomic operation Scalability improvement In large scale roaming systems, it is necessary to provide for scalable management of keys used for integrity protection and authentication. Proxy chaining enables implementation of hierarchical forwarding within roaming systems, which improves scalability in roaming consortia based on authentication protocols without automated key management. Since RADIUS as described in [3] requires a shared secret for each client-server pair, a consortium of 100 roaming partners would require 4950 shared secrets if each partner were to contact each other directly, one for each partner pair. However, were the partners to route authentication requests through a central proxy, only 100 shared secrets would be needed, one for each partner. The reduction in the number of partner pairs also brings with it other benefits, such as a reduction in the number of bilateral agreements and accounting and auditing overhead. Thus, hierarchical routing might be desirable even if an authentiation protocol supporting automated key exchange were available. Capabilities adjustment As part of the authentication exchange with the home server, the NAS receives authorization parameters describing the service to be provided to the roaming user. Since RADIUS, described in [3], does not support capabilities negotiation, it is possible that the authorization parameters sent by the home server will not match those required by the NAS. For example, a static IP address could be specified that would not be routable by the NAS. As a result, capbilities adjustment is performed by proxies in order to enable communication between NASes and home servers with very different feature sets.Aboba & Vollbrecht Informational [Page 3]RFC 2607 Proxy Chaining and Policy in Roaming June 1999 As part of capabilities adjustment, proxies can edit attributes within the Access-Accept in order to ensure compatibility with the NAS. Such editing may include addition, deletion, or modification of attributes. In addition, in some cases it may be desirable for a proxy to edit attributes within an Access-Request in order to clean up or even hide information destined for the home server. Note that if the proxy edits attributes within the Access-Accept, then it is possible that the service provided to the user may not be the same as that requested by the home server. This creates the possibility of disputes arising from inappropriate capabilities adjustment. Note that were roaming to be implemented based on an authentication/authorization protocol with built-in capability negotiation, proxy-based capabilities adjustment would probably not be necessary. Authentication forwarding Since roaming associations frequently implement hierarchical forwarding in order to improve scalability, in order for a NAS and home server to communicate, authentication and accounting packets are forwarded by one or more proxies. The path travelled by these packets, known as the roaming relationship path, is determined from the Network Access Identifier (NAI), described in [6]. Since most NAS devices do not implement forwarding logic, a proxy is needed to enable forwarding of authentication and accounting packets. For reasons that are described in the security section, in proxy systems it is desirable for accounting and authentication packets to follow the same path. Note: The way a proxy learns the mapping between NAI and the home server is beyond the scope of this document. This mapping can be accomplished by static configuration in the proxy, or by some currently undefined protocol that provides for dynamic mapping. For the purposes of this document, it is assumed that such a mapping capability exists in the proxy. Policy implementation In roaming systems it is often desirable to be able to implement policy. For example, a given partner may only be entitled to use of a given NAS during certain times of the day. In order to implement such policies, proxies may be implemented at the interface between administrative domains and programmed to modify authentication/authorization packets forwarded between the NAS and the home server. As a result, from a security point of view, a proxy implementing policyAboba & Vollbrecht Informational [Page 4]RFC 2607 Proxy Chaining and Policy in Roaming June 1999 operates as a "man in the middle." Accounting reliability improvement In roaming systems based on proxy chaining, it is necessary for accounting information to be forwarded between the NAS and the home server. Thus roaming is inherently an interdomain application. This represents a problem since the RADIUS accounting protocol, described in [4] is not designed for use on an Internet scale. Given that in roaming accounting packets travel between administrative domains, packets will often pass through network access points (NAPs) where packet loss may be substantial. This can result in unacceptable rates of accounting data loss. For example, in a proxy chaining system involving four systems, a one percent failure rate on each hop can result in loss of 3.9 percent of all accounting transactions. Placement of an accounting proxy near the NAS may improve reliability by enabling enabling persistent storage of accounting records and long duration retry. Atomic operation In order to ensure consistency among all parties required to process accounting data, it can be desirable to assure that transmission of accounting data is handled as an atomic operation. This implies that all parties on the roaming relationship path will receive and acknowledge the receipt of the accounting data for the operation to complete. Proxies can be used to ensure atomic delivery of accounting data by arranging for delivery of the accounting data in a serial fashion, as discussed in section 5.2.5. Proxy chaining An example of a proxy chaining system is shown below. (request) (request) (request) NAS ----------> Proxy1 ----------> Proxy2 ----------> Home (reply) (reply) (reply) Server <--------- <--------- <--------- In the above diagram, the NAS generates a request and sends it to Proxy1. Proxy1 forwards the request to Proxy2 and Proxy2 forwards the request to the Home Server. The Home Server generates a reply and sends it to Proxy2. Proxy2 receives the reply, matches it with the request it had sent, and forwards a reply to Proxy1. Proxy1Aboba & Vollbrecht Informational [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -