📄 rfc1710.txt
字号:
5. SIPP Transition Mechanisms The two key motivations in the SIPP transition mechanisms are to provide direct interoperability between IPv4 and SIPP hosts and to allow the user population to adopt SIPP in an a highly diffuse fashion. The transition must be incremental, with few or no critical interdependencies, if it is to succeed. The SIPP transition allows the users to upgrade their hosts to SIPP, and the network operators to deploy SIPP in routers, with very little coordination between the two. The mechanisms and policies of the SIPP transition are called "IPAE". Having a separate term serves to highlight those features designed specifically for transition. Once an acronym for an encapsulation technique to facilitate transition, the term "IPAE" now is mostly historical. The IPAE transition is based on five key elements: 1) A 64-bit SIPP addressing plan that encompasses the existing 32-bit IPv4 addressing plan. The 64-bit plan will be used to assign addresses for both SIPP and IPv4 nodes at the beginning of the transition. Existing IPv4 nodes will not need to change their addresses, and IPv4 hosts being upgraded to SIPP keep their existing IPv4 addresses as the low-order 32 bits of their SIPP addresses. Since the SIPP addressing plan is a superset of the existing IPv4 plan, SIPP hosts are assigned only a single 64-bit address, which can be used to communicate with both SIPP and IPv4 hosts. 2) A mechanism for encapsulating SIPP traffic within IPv4 packets so that the IPv4 infrastructure can be leveraged early in the transition. Most of the "SIPP within IPv4 tunnels" can be automatically configured.Hinden [Page 18]RFC 1710 SIPP IPng White Paper October 1994 3) Algorithms in SIPP hosts that allow them to directly interoperate with IPv4 hosts located on the same subnet and elsewhere in the Internet. 4) A mechanism for translating between IPv4 and SIPP headers to allow SIPP-only hosts to communicate with IPv4-only hosts and to facilitate IPv4 hosts communicating over over a SIPP-only backbone. 5) An optional mechanism for mapping IPv4 addresses to SIPP address to allow improved scaling of IPv4 routing. At the present time given the success of CIDR, this does not look like it will be needed in a transition to SIPP. If Internet growth should continue beyond what CIDR can handle, it is available as an optional mechanism. IPAE ensures that SIPP hosts can interoperate with IPv4 hosts anywhere in the Internet up until the time when IPv4 addresses run out, and afterward allows SIPP and IPv4 hosts within a limited scope to interoperate indefinitely. This feature protects for a very long time the huge investment users have made in IPv4. Hosts that need only a limited connectivity range (e.g., printers) need never be upgraded to SIPP. This feature also allows SIPP-only hosts to interoperate with IPv4-only hosts. The incremental upgrade features of IPAE allow the host and router vendors to integrate SIPP into their product lines at their own pace, and allows the end users and network operators to deploy SIPP on their own schedules. The interoperability between SIPP and IPv4 provided by IPAE also has the benefit of extending the lifetime of IPv4 hosts. Given the large installed base of IPv4, changes to IPv4 in hosts are nearly impossible. Once an IPng is chosen, most of the new feature development will be done on IPng. New features in IPng will increase the incentives to adopt and deploy it.6. Why SIPP? There are a number of reasons why SIPP should be selected as the IETF's IPng. It solves the Internet scaling problem, provides a flexible transition mechanism for the current Internet, and was designed to meet the needs of new markets such as nomadic personal computing devices, networked entertainment, and device control. It does this in a evolutionary way which reduces the risk of architectural problems.Hinden [Page 19]RFC 1710 SIPP IPng White Paper October 1994 Ease of transition is a key point in the design of SIPP. It is not something was was added in at the end. SIPP is designed to interoperate with IPv4. Specific mechanisms (C-bit, embedded IPv4 addresses, etc.) were built into SIPP to support transition and compatability with IPv4. It was designed to permit a gradual and piecemeal deployment without any dependencies. SIPP supports large hierarchical addresses which will allow the Internet to continue to grow and provide new routing capabilities not built into IPv4. It has cluster addresses which can be used for policy route selection and has scoped multicast addresses which provide improved scaleability over IPv4 multicast. It also has local use addresses which provide the ability for "plug and play" installation. SIPP is designed to have performance better than IPv4 and work well in low bandwidth applications like wireless. Its headers are less expensive to process than IPv4 and its 64-bit addresses are chosen to be well matched to the new generation of 64bit processors. Its compact header minimizes bandwidth overhead which makes it ideal for wireless use. SIPP provides a platform for new Internet functionality. This includes support for real-time flows, provider selection, host mobility, end-to- end security, auto-configuration, and auto- reconfiguration. In summary, SIPP is a new version of IP. It can be installed as a normal software upgrade in internet devices. It is interoperable with the current IPv4. Its deployment strategy was designed to not have any "flag" days. SIPP is designed to run well on high performance networks (e.g., ATM) and at the same time is still efficient for low bandwidth networks (e.g., wireless). In addition, it provides a platform for new internet functionality that will be required in the near future.Hinden [Page 20]RFC 1710 SIPP IPng White Paper October 19947. Status of SIPP Effort There are many active participants in the SIPP working group. Groups making active contributions include: Group Activity --------------------- ---------------------------------------- Beame & Whiteside Implementation (PC) Bellcore Implementation (SunOS), DNS and ICMP specs. Digital Equipment Corp. Implementation (Alpha/OSF, Open VMS) INRIA Implementation (BSD, BIND), DNS & OSPF specs. INESC Implementation (BSD/Mach/x-kernel) Intercon Implementation (MAC) MCI Phone Conferences Merit IDRP for SIPP Specification Naval Research Lab. Implementation (BSD) Security Design Network General Implementation (Sniffer) SGI Implementation (IRIX, NetVisulizer) Sun Implementation (Solaris 2.x, Snoop) TGV Implementation (Open VMS) Xerox PARC Protocol Design Bill Simpson Implementation (KA9Q) As of the time this paper was written there were a number of SIPP and IPAE implementations. These include: Implementation Status -------------- ------------------------------------ BSD/Mach Completed (telnet, NFS, AFS, UDP) BSD/Net/2 In Progress Bind Code done DOS &Windows Completed (telnet, ftp, tftp, ping) IRIX In progress (ping) KA9Q In progress (ping, TCP) Mac OS Completed (telnet, ftp, finger, ping) NetVisualizer Completed (SIP & IPAE) Open VMS Completed (telnet, ftp), In Progress OSF/1 In Progress (ping, ICMP) Sniffer Completed (SIP & IPAE) Snoop Completed (SIP & IPAE) Solaris Completed (telnet, ftp, tftp, ping) Sun OS In ProgressHinden [Page 21]RFC 1710 SIPP IPng White Paper October 19948. Where to Get Additional Information The documentation listed in the reference sections can be found in one of the IETF internet draft directories or in the archive site for the SIPP working group. This is located at: ftp.parc.xerox.com in the /pub/sipp directory. In addition other material relating to SIPP (such as postscript versions of presentations on SIPP) can also be found in the SIPP working group archive. To join the SIPP working group, send electronic mail to sipp-request@sunroof.eng.sun.com An archive of mail sent to this mailing list can be found in the IETF directories at cnri.reston.va.us.9. Security Considerations Security issues are discussed in section 4.6.10. Author's Address Robert M. Hinden Manager, Internet Engineering Sun Microsystems, Inc. MS MTV5-44 2550 Garcia Ave. Mt. View, CA 94303 Phone: (415) 336-2082 Fax: (415) 336-6016 EMail: hinden@eng.sun.com11. References [ADDR] Francis, P., "Simple Internet Protocol Plus (SIPP): Unicast Hierarchical Address Assignment", Work in Progress, January 1994. [AUTH] Atkinson, R., "SIPP Authentication Payload", Work in Progress, January, 1994. [CIDR] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Supernetting: an Address Assignment and Aggregation Strategy", RFC 1338, BARRNet, cisco, Merit, OARnet, June 1992.Hinden [Page 22]RFC 1710 SIPP IPng White Paper October 1994 [DISC] Simpson, W., "SIPP Neighbor Discovery", Work in Progress, March 1994. [DIS2] Simpson, W., "SIPP Neighbor Discovery -- ICMP Message Formats", Work in Progress, March 1994. [DHCP] Thomson, S., "Simple Internet Protocol Plus (SIPP): Automatic Host Address Assignment", Work in Progress, March 1994. [DNS] Thomson, S., and C. Huitema, "DNS Extensions to Support Simple Internet Protocol Plus (SIPP)", Work in Progress, March 1994. [ICMP] Govindan, R., and S. Deering, "ICMP and IGMP for the Simple Internet Protocol Plus (SIPP)", Work in Progress, March 1994. [IDRP] Hares, S., "IDRP for SIP", Work in Progress, November 1993. [IPAE] Gilligan, R., et al, "IPAE: The SIPP Interoperability and Transition Mechanism", Work in Progress, March 1994. [IPV4] Postel, J., "Internet Protocol- DARPA Internet Program Protocol Specification", STD 5, RFC 791, DARPA, September 1981. [OSPF] Francis, P., "OSPF for SIPP", Work in Progress, February 1994. [RIP2] Malkin, G., and C. Huitema, "SIP-RIP", Work in Progress, March 1993. [ROUT] Deering, S., et al, "Simple Internet Protocol Plus (SIPP): Routing and Addressing", Work in Progress, February 1994. [SARC] Atkinson, R., "SIPP Security Architecture", Work in Progress, January 1994. [SECR] Atkinson, R., "SIPP Encapsulating Security Payload (ESP)", Work in Progress, January 1994. [SIPP] Deering, S., "Simple Internet Protocol Plus (SIPP) Specification", Work in Progress, February 1994.Hinden [Page 23]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -