📄 rfc1710.txt
字号:
to merge and concentrate their efforts. The chairs of the new SIP working group were Steve Deering and Robert Hinden. In parallel to SIP, Paul Francis (formerly Paul Tsuchiya) had founded a working group to develop the "P" Internet Protocol (Pip). Pip was a new internet protocol based on a new architecture. The motivation behind Pip was that the opportunity for introducing a new internet protocol does not come very often and given that opportunity important new features should be introduced. Pip supported variable length addressing in 16-bit units, separation of addresses from identifiers, support for provider selection, mobility, and efficientHinden [Page 6]RFC 1710 SIPP IPng White Paper October 1994 forwarding. It included a transition scheme similar to IPAE. After considerable discussion among the leaders of the Pip and SIP working groups, they came to realize that the advanced features in Pip could be accomplished in SIP without changing the base SIP protocol as well as keeping the IPAE transition mechanisms. In essence it was possible to keep the best features of each protocol. Based on this the groups decided to merge their efforts. The new protocol was called Simple Internet Protocol Plus (SIPP). The chairs of the merged working group are Steve Deering, Paul Francis, and Robert Hinden.4. SIPP Overview SIPP is a new version of the Internet Protocol, designed as a successor to IP version 4 [IPV4]. SIPP is assigned IP version number 6. SIPP was designed to take an evolutionary step from IPv4. It was not a design goal to take a radical step away from IPv4. Functions which work in IPv4 were kept in SIPP. Functions which didn't work were removed. The changes from IPv4 to SIPP fall primarily into the following categories: o Expanded Routing and Addressing Capabilities SIPP increases the IP address size from 32 bits to 64 bits, to support more levels of addressing hierarchy and a much greater number of addressable nodes. SIPP addressing can be further extended, in units of 64 bits, by a facility equivalent to IPv4's Loose Source and Record Route option, in combination with a new address type called "cluster addresses" which identify topological regions rather than individual nodes. The scaleability of multicast routing is improved by adding a "scope" field to multicast addresses. o Header Format Simplification Some IPv4 header fields have been dropped or made optional, to reduce the common-case processing cost of packet handling and to keep the bandwidth cost of the SIPP header almost as low as that of IPv4, despite the increased size of the addresses. The basic SIPP header is only four bytes longer than IPv4.Hinden [Page 7]RFC 1710 SIPP IPng White Paper October 1994 o Improved Support for Options Changes in the way IP header options are encoded allows for more efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options in the future. o Quality-of-Service Capabilities A new capability is added to enable the labeling of packets belonging to particular traffic "flows" for which the sender requests special handling, such as non-default quality of service or "real-time" service. o Authentication and Privacy Capabilities SIPP includes the definition of extensions which provide support for authentication, data integrity, and confidentiality. This is included as a basic element of SIPP. The SIPP protocol consists of two parts, the basic SIPP header and SIPP Options.4.1 SIPP Header Format +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | Payload Type | Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Source Address + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Destination Address + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version 4-bit Internet Protocol version number = 6. Flow Label 28-bit field. See SIPP Quality of Service section. Payload Length 16-bit unsigned integer. Length of payload, i.e., the rest of the packet following the SIPP header, in octets.Hinden [Page 8]RFC 1710 SIPP IPng White Paper October 1994 Payload Type 8-bit selector. Identifies the type of header immediately following the SIPP header. Uses the same values as the IPv4 Protocol field [STD 2, RFC 1700]. Hop Limit 8-bit unsigned integer. Decremented by 1 by each node that forwards the packet. The packet is discarded if Hop Limit is decremented to zero. Source Address 64 bits. An address of the initial sender of the packet. See [ROUT] for details. Destination Address 64 bits. An address of the intended recipient of the packet (possibly not the ultimate recipient, if an optional Routing Header is present).4.2 SIPP Options SIPP includes an improved option mechanism over IPv4. SIPP options are placed in separate headers that are located between the SIPP header and the transport-layer header in a packet. Most SIPP option headers are not examined or processed by any router along a packet's delivery path until it arrives at its final destination. This facilitates a major improvement in router performance for packets containing options. In IPv4 the presence of any options requires the router to examine all options. The other improvement is that unlike IPv4, SIPP options can be of arbitrary length and the total amount of options carried in a packet is not limited to 40 bytes. This feature plus the manner in which they are processed, permits SIPP options to be used for functions which were not practical in IPv4. A good example of this is the SIPP Authentication and Security Encapsulation options. In order to improve the performance when handling subsequent option headers and the transport protocol which follows, SIPP options are always an integer multiple of 8 octets long, in order to retain this alignment for subsequent headers.Hinden [Page 9]RFC 1710 SIPP IPng White Paper October 1994 The SIPP option headers which are currently defined are: Option Function --------------- --------------------------------------- Routing Extended Routing (like IPv4 loose source route) Fragmentation Fragmentation and Reassembly Authentication Integrity and Authentication Security Encapsulation Confidentiality Hop-by-Hop Option Special options which require hop by hop processing4.3 SIPP Addressing SIPP addresses are 64-bits long and are identifiers for individual nodes and sets of nodes. There are three types of SIPP addresses. These are unicast, cluster, and multicast. Unicast addresses identify a single node. Cluster addresses identify a group of nodes, that share a common address prefix, such that a packet sent to a cluster address will be delivered to one member of the group. Multicast addresses identify a group of nodes, such that a packet sent to a multicast address is delivered to all of the nodes in the group. SIPP supports addresses which are twice the number of bits as IPv4 addresses. These addresses support an address space which is four billion (2^^32) times the size of IPv4 addresses (2^^32). Another way to say this is that SIPP supports four billion internets each the size of the maximum IPv4 internet. That is enough to allow each person on the planet to have their own internet. Even with several layers of hierarchy (with assignment utilization similar to IPv4) this would allow for each person on the planet to have their own internet each holding several thousand hosts. In addition, SIPP supports extended addresses using the routing option. This capability allows the address space to grow to 128- bits, 192-bits (or even larger) while still keeping the address units in manageable 64-bit units. This permits the addresses to grow while keeping the routing algorithms efficient because they continue to operate using 64- bit units.4.3.1 Unicast Addresses There are several forms of unicast address assignment in SIPP. These are global hierarchical unicast addresses, local-use addresses, and IPv4- only host addresses. The assignment plan for unicast addresses is described in [ADDR].Hinden [Page 10]RFC 1710 SIPP IPng White Paper October 19944.3.1.1 Global Unicast Addresses Global unicast addresses are used for global communication. They are the most common SIPP address and are similar in function to IPv4 addresses. Their format is: |1| n bits | m bits | p bits | 63-n-m-p| +-+-------------------+---------------------+-----------+---------+ |C| PROVIDER ID | SUBSCRIBER ID | SUBNET ID | NODE ID | +-+-------------------+---------------------+-----------+---------+ The first bit is the IPv4 compatibility bit, or C-bit. It indicates whether the node represented by the address is IPv4 or SIPP. SIPP addresses are provider-oriented. That is, the high-order part of the address is assigned to internet service providers, which then assign portions of the address space to subscribers, etc. This usage is similar to assignment of IP addresses under CIDR. The SUBSCRIBER ID distinguishes among multiple subscribers attached to the provider identified by the PROVIDER ID. The SUBNET ID identifies a topologically connected group of nodes within the subscriber network identified by the subscriber prefix. The NODE ID identifies a single node among the group of nodes identified by the subnet prefix.4.3.1.2 Local-Use Address A local-use address is a unicast address that has only local routability scope (within the subnet or within a subscriber network), and may have local or global uniqueness scope. They are intended for use inside of a site for "plug and play" local communication, for bootstrapping up to a single global addresses, and as part of an address sequence for global communication. Their format is: | 4 | |bits| 12 bits | 48 bits | +----+---------------+--------------------------------------------+ |0110| SUBNET ID | NODE ID | +----+---------------+--------------------------------------------+ The NODE ID is an identifier which much be unique in the domain in which it is being used. In most cases these will use a node's IEEE- 802 48bit address. The SUBNET ID identifies a specific subnet in a site. The combination of the SUBNET ID and the NODE ID to form a local use address allows a large private internet to be constructed without any other address allocation. Local-use addresses have two primary benefits. First, for sites or organizations that are not (yet) connected to the global Internet, there is no need to request an address prefix from the globalHinden [Page 11]RFC 1710 SIPP IPng White Paper October 1994 Internet address space. Local-use addresses can be used instead. If the organization connects to the global Internet, it can use it's local use addresses to communicate with a server (e.g., using the Dynamic Host Configuration Protocol [DHCP]) to have a global address automatically assigned. The second benefit of local-use addresses is that they can hold much larger NODE IDs, which makes possible a very simple form of auto- configuration of addresses. In particular, a node may discover a SUBNET ID by listening to a Router Advertisement messages on its attached link(s), and then fabricating a SIPP address for itself by using its link-level address as the NODE ID on that subnet. An auto-configured local-use address may be used by a node as its own identification for communication within the local domain, possibly including communication with a local address server to obtain a global SIPP address. The details of host auto-configuration are described in [DHCP].4.3.1.3 IPv4-Only Addresses SIPP unicast addresses are assigned to IPv4-only hosts as part of the IPAE scheme for transition from IPv4 to SIPP. Such addresses have the following form:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -