📄 rfc1374.txt
字号:
The length of a HIPPI packet, including trailing fill, shall be a multiple of eight octets as required by HIPPI-LE. +----------+-----------+---------------------+----------- ------+ | | | | IP . . . 0 - 7 | | HIPPI-FP | HIPPI-LE | IEEE 802.2 LLC/SNAP | octets| |(8 octets)|(24 octets)| (8 octets) | ARP . . . fill | +----------+-----------+---------------------+----------- ------+ HIPPI Packet Structure HIPPI-FP Header ULP-id (8 bits) shall contain 4. D1_Data_Set_Present (1 bit) shall be set. Start_D2_on_Burst_Boundary (1 bit) shall be zero. Reserved (11 bits) shall contain zero. D1_Area_Size (8 bits) should be sent as 3. Destinations shall accept any value that HIPPI-FP defines as legal: from 3 to 127 (32 bit HIPPI) or 3 to 255 (64 bit HIPPI). D2_Offset (3 bits) may be any value from 0 to 7. D2_Size (32 bits) Shall contain the number of octets in theRenwick & Nicholson [Page 6]RFC 1374 IP and ARP on HIPPI October 1992 IEEE 802.2 LLC Type 1 PDU, or zero if no PDU is present. It shall not exceed 65,288 (decimal). This value includes the IEEE 802.2 LLC/SNAP header and the IP datagram. It does not include trailing fill octets. (See "MTU," below.) The first octet of the IEEE 802.2 LLC PDU (SSAP) shall be located at offset "n" of the packet, where n = 8 + (D1_Area_Size*8) + D2_Offset as specified in HIPPI-FP. HIPPI-LE Header FC (3 bits) shall contain zero unless otherwise defined by local administration. Double_Wide (1 bit) shall contain one if the Destination associated with the sending Source supports 64 bit HIPPI operation. Otherwise it shall contain zero. Message_Type (4 bits) contains a code identifying the type of HIPPI-LE PDU. Defined values (binary) are: 0 Data PDU 1 Address Resolution Request PDU (AR_Request) 2 Address Resolution Response PDU (AR_Response) 3 Self Address Resolution Request PDU (AR_S_Request) 4 Self Address Resolution Response PDU (AR_S_Response) 5-11 Reserved by the ANSI X3T9.3 committee 12-15 Locally Assigned Destination_Switch_Address is a 24-bit field containing the Switch Address of the Destination if known, otherwise zero. If the address comprises less than 24 bits, it shall be right justified (occupying the least significant bits) in the field. Destination_Address_Type (4 bits) and Source_Address_Type (4 bits) contain codes identifying the type of addresses in the Destination_Switch_Address and Source_Switch_Address fields respectively. Defined values (binary) are: 0 Unspecified 1 HIPPI-SC Source Route (24 bits) 2 HIPPI-SC Address (12 bits) 3-11 Reserved by the ANSI X3T9.3 committee 12-15 Locally AssignedRenwick & Nicholson [Page 7]RFC 1374 IP and ARP on HIPPI October 1992 Source_Switch_Address is a 24-bit field containing the Switch Address of the Source. If the address comprises less than 24 bits, it shall be right justified (occupying the least significant bits) in the field. Reserved (16 bits) shall contain zero. Destination_IEEE_Address (48 bits) shall contain the 48 bit Universal LAN MAC Address of the Destination if known, otherwise zero. LE_Locally_Administered (16 bits) shall contain zero unless otherwise defined by local administration. Source_IEEE_Address (48 bits) shall contain the 48 bit Universal LAN MAC Address of the Source if known, otherwise zero. IEEE 802.2 LLC The IEEE 802.2 LLC Header shall begin in the first octet of the HIPPI-FP D2_Area. SSAP (8 bits) shall contain 170 (decimal). DSAP (8 bits) shall contain 170 (decimal). CTL (8 bits) shall contain 3 (Unnumbered Information). SNAP Organization Code (24 bits) shall be zero. EtherType (16 bits) shall be set as defined in Assigned Numbers [8] (IP = 2048, ARP = 2054, RARP = 32,821).Renwick & Nicholson [Page 8]RFC 1374 IP and ARP on HIPPI October 1992 31 28 23 21 15 10 7 2 0 +-----+---------+-+-+-----------+---------+-----+---------+-----+ 0 | 04 |1|0| Reserved | 03 | 0 | +---------------+-+-+---------------------+---------------+-----+ 1 | (n+8) | +-----+-+-------+-----------------------------------------------+ 2 |[LA] |W|M_Type | Destination_Switch_Address | +-----+-+-------+-----------------------------------------------+ 3 | D_A_T | S_A_T | Source_Switch_Address | +-------+-------+---------------+-------------------------------+ 4 | Reserved | [Destination_IEEE_Address] | +-------------------------------+ | 5 | | +-------------------------------+-------------------------------+ 6 | [LA] | [Source_IEEE_Address] | +-------------------------------+ | 7 | | +===============+===============+===============+===============+ 8 | AA | AA | 03 | 00 | +---------------+---------------+---------------+---------------+ 9 | 00 | 00 | [EtherType] | +---------------+---------------+---------------+---------------+ 10 |Message octet 0|Message octet 1|Message octet 2| . . . | +---------------+---------------+---------------+--- | | . . . | | -------+---------------+---------------+---------------+ | . . . | octet (n-2) | octet (n-1) | FILL | +---------------+---------------+---------------+---------------+ N-1| FILL | FILL | FILL | FILL | +---------------+---------------+---------------+---------------+ HIPPI Packet Format Words 0-1: HIPPI-FP Header Words 2-7: D1 Area (HIPPI-LE Header) Words 8-9: D2 Area (IEEE 802.2 LLC/SNAP) Words 10-(N-1): D2 Area (IP or ARP message) (n) is the number of octets in the IP or ARP message. +====+ denotes the boundary between D1 and D2 areas. [LA] fields are zero unless used otherwise locally. Abbreviations: "W" = Double_Wide field; "M_Type" = Message_Type field; "D_A_T" = Destination_Address_Type; "S_A_T" = Source_Address_Type; [FILL] octets complete the HIPPI packet to an even number of 32 bit words. The number of fill octets is not counted in the data length.Renwick & Nicholson [Page 9]RFC 1374 IP and ARP on HIPPI October 1992 IEEE 802.2 Data The IEEE 802.2 Data shall follow the EtherType field immediately. Fill octets shall be used following the Data as necessary to make the number of octets in the packet a multiple of 8. In accordance with HIPPI-FP, the amount of this fill is not included in the D2_Size value in the HIPPI-FP Header. The order of the octets in the data stream is from higher numbered to lower numbered data signal (left to right) within the HIPPI word, as specified in HIPPI-FP Clause 7, "Word and byte formats." With the 1600 megabit/second data rate option (64 bit) bits 32 through 63 are on Cable B, so that the four octets on Cable B come logically before those on Cable A. Within each octet, the most significant bit is the highest numbered signal.48 bit Universal LAN MAC Addresses IEEE Standard 802.1A specifies the Universal LAN MAC Address. The globally unique part of the 48 bit space is administered by the IEEE. Each node on a HIPPI-SC LAN should be assigned a ULA. Multiple ULAs may be used if a node contains more than one IEEE 802.2 LLC protocol entity. The format of the address within its 48 bit HIPPI-LE fields follows IEEE 802.1A canonical bit order and HIPPI-FP bit and byte order: 31 23 15 7 0 +-------------------------------+---------------+---------------+ | (not used for ULA) |ULA octet 0|L|G| ULA octet 1 | +---------------+---------------+---------------+---------------+ | ULA octet 2 | ULA octet 3 | ULA octet 4 | ULA octet 5 | +---------------+---------------+---------------+---------------+ Universal LAN MAC Address Format L (U/L bit) = 1 for Locally administered addresses, 0 for Universal. G (I/G bit) = 1 for Group addresses, 0 for Individual. The use of ULAs is optional, but encouraged. Although ULAs are not used by HIPPI-SC switches, they are helpful for HIPPI Switch Address resolution, and for distinguishing between multiple logical entities that may exist within one node. They may also be used by gateway devices that replace HIPPI hardware headers with the MAC headers of other LANs. Carrying the ULAs in the HIPPI header may simplify these devices, and it may also help if HIPPI is used as an interface to some future HIPPI based LAN that uses ULAs for addressing.Renwick & Nicholson [Page 10]RFC 1374 IP and ARP on HIPPI October 1992Recommended HIPPI-FP Options HIPPI-FP allows some flexibility in the construction of a HIPPI packet, including placement of short bursts, optional fill and offset octets between the D1 and D2 areas and fill following the D2 data. For efficiency, Sources should limit the use of these options: 1. Send the short burst as the last burst of the packet rather than the first. 2. Do not place fill octets between the HIPPI-LE header and the start of the D2_Area. 3. Use no more than seven octets after the D2 Data, as needed to make the total packet length a multiple of 8 octets.One HIPPI-FP option is forbidden: setting the Start_D2_on_Burst_Boundaryflag to one. This places no limitation on the formation of packets intoa series of bursts; a Source may segment the packet in any legal manneraccording to HIPPI-FP, including forcing the D2_Area to start on a burstboundary. The purpose of the Start_D2_on_Burst_Boundary flag is to helppreserve the segmentation of the packet for some device-controlprotocols that use the first burst boundary to separate command and dataareas within the packet. Requiring this flag to be clear means thatwhen a packet arrives at the Destination its burst boundaries might notbe exactly as the Source sent them. This may occur if a HIPPI packetpasses over some other medium in the route between HIPPI LANs.Notwithstanding these recommendations, each Destination shall accept anywell-formed HIPPI packet within the definitions in HIPPI-FP.Note that neither HIPPI-FP nor HIPPI-LE limits the number of fill bytesplaced between the end of the IP packet and the end of the HIPPI-PHpacket. Some source implementations may add fill sufficient to overflowa destination input buffer. To avoid interpreting valid packets aserrors, destinations should ignore overflow conditions and verify thatat least the number of bytes indicated by the IP header actuallyarrived.I-Field format The I-field bits, as defined in HIPPI-SC, shall be set as follows:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -