📄 rfc1679.txt
字号:
Network Working Group D. GreenRequest for Comments: 1679 P. IreyCategory: Informational D. Marlow K. O'Donoghue NSWC-DD August 1994 HPN Working Group Input to the IPng Requirements SolicitationStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document was submitted to the IETF IPng area in response to RFC 1550. Publication of this document does not imply acceptance by the IPng area of any ideas expressed within. Comments should be submitted to the big-internet@munnari.oz.au mailing list.Executive Summary The Navy's High Performance Network (HPN) working group has studied the requirements of mission critical applications on Navy platforms. Based on this study, three basic categories of issues for IPng have been identified. The assumptions identified include accommodation of current functionality, commercial viability, and transitioning. The general requirements identified include addressing, integrated services architecture, mobility, multicast, and rapid route reconfiguration. Finally, the additional considerations identified include fault tolerance, policy based routing, security, and time synchroniztion. The HPN working group is interested in participating with the IETF in the development of standards which would apply to mission critical systems. In particular, the HPN working group is interested in the development of multicast functionality, an integrated services architecture, and support for high performance subnetworks.1. Introduction The HPN working group has been established to study future network architectures for mission critical applications aboard Navy platforms. As a result, the HPN working group is interested in the results of the IPng selection and development process. This document is a product of discussions within the HPN working group.Green, Irey, Marlow & O'Donoghue [Page 1]RFC 1679 HPN IPng Requirements August 1994 The purpose of this document is to provide what the HPN working group perceives as requirements for an IPng protocol set. Many of the necessary capabilities exist in current Internet and ISO network protocols; however, the HPN working group has identified needed capabilities that are beyond the existing standards. The HPN working group has identified three categories of topics for discussion in this document. The first category is assumptions or those topics that the HPN working group believes the IPng process will solve satisfactorily without specific Navy input. The second category is general requirements. These are capabilities that are felt to be insufficiently addressed in existing network protocols and of key importance to Navy mission critical applications. Finally, a set of additional considerations has been identified. These are also issues of importance to the HPN working group. However, no guidance or specific requests can be provided at this time.2. Background The US Navy has set up a program through the Space and Naval Warfare Systems Command called the Next Generation Computer Resources (NGCR) Program. The purpose of this program is to identify the evolving needs for information system technology in Navy mission critical systems. The NGCR High Performance Network (HPN) working group was recently established by the NGCR program to examine high performance networks for use on future Navy platforms (aircraft, surface ships, submarines, and certain shore-based applications). This working group is currently reviewing Navy needs. The requirements provided below are based on the HPN working group's current understanding of these Navy application areas. The application areas of interest are further examined below. The time frame for design, development, and deployment of HPN based systems and subsystems is 1996 into the twenty first century. Three general problem domains have been identified by the HPN working group. These are the particular problem domains within a mission critical environment that the HPN working group is targeting. The first is a distributed combat system environment. This problem domain is analogous to a collection of workstations involved in many varied applications involving multiple sources and types of information. Analog, audio, digital, discrete, graphic, textual, video, and voice information must be coordinated in order to present a single concise view to a commander, operator, or any end user. The second problem area highlights the general internetworking environment. The task of moving information to many heterogeneous systems over various subnetworks is addressed. Finally, the problem of providing a high speed interconnect for devices such as sensors and signal processors is identified. [1]Green, Irey, Marlow & O'Donoghue [Page 2]RFC 1679 HPN IPng Requirements August 19942.1 Application Area The application area of HPN is the communication network which is a component of the mission critical systems of Navy platforms. The expected end points or users of the HPN include humans, computers, and the many devices (cameras, etc.) found on such platforms. The function of these end points includes sensor input, signal processors, operator consoles, navigation systems, etc. The endpoints are typically grouped into systems both on platforms and at shore- based sites. These systems perform functions including long range planning, analysis of sensor information, and machinery control in real-time. Information types that have been identified as required by the HPN working group include voice, live and pre-recorded audio ranging from voice to CD quality (e.g., from sensors), video (1 to 30 frames per second in both monochrome and color), image data (static or from real-time sensors), reliable and connectionless data transfer, and very high-bandwidth (gigabits per second) unprocessed sensor data.2.2 Services Another way of categorizing the HPN application area is by considering the user services that need to be supported. Some of these services are the following: 1. process to process message passing 2. distributed file and database manipulation 3. e-mail (both within the platform and off the platform) 4. teleconferencing (with the platform, between platforms, and across the Internet) 5. video monitoring of various physical environments 6. voice distribution (as a minimum between computer processes and people) 7. image services 8. time synchronization 9. name or directory services 10. network and system managementGreen, Irey, Marlow & O'Donoghue [Page 3]RFC 1679 HPN IPng Requirements August 1994 11. security services (support of multilevel data security, privacy and protection)3. Assumptions The assumptions documented below are concerns that the HPN working group presumes will be accommodated in the IPng process. However, they are of enough importance to this working group to merit identification.3.1 Accommodation of Current Functionality The IPng protocols need to provide for at least the existing functionality. In particular, the following issues have been identified. 1) The IPng protocols need to provide for the basic connectionless transfer of information from one end-point to another. 2) The IPng protocols need to support multiple subnetwork technologies. This includes but is not limited to Ethernet, FDDI, Asynchronous Transfer Mode (ATM), Fiber Channel, and Scalable Coherent Interface (SCI). These are the subnetwork technologies that are of particular interest to the HPN working group. Ideally, IPng protocols should be subnetwork independent. 3) The IPng protocols need to support hosts that may be multihomed. Multihomed in this context implies that a single host may support multiple different subnetwork technologies. Multihomed hosts must have the capability to steer the traffic to selected subnetworks. 4) The IPng process needs to recognize that IPng may be only one of several network protocols that a host utilizes. 5) The IPng process needs to provide for appropriate network management in the finished product. Network management is of vital importance to the applications of interest to the HPN working group.3.2 Commercial Viability As is the case in the commercial world, the HPN working group feels strongly that the IPng protocols must be commercially viable. This includes but is not limited to the following issues:Green, Irey, Marlow & O'Donoghue [Page 4]RFC 1679 HPN IPng Requirements August 1994 1) The IPng protocols must function correctly. The Navy cannot afford to have network protocol problems in mission critical systems. There must be a high degree of confidence that the protocols are technically sound and multi-vendor interoperability is achievable. 2) The IPng protocols must have the support of the commercial/industrial community. This may first be demonstrated by a strong consensus within the IETF community.3.3 Transition Plan The Navy has a large number of existing networks including both Internet and ISO protocols as well as a number of proprietary systems. As a minimum, the IPng effort must address how to transition from existing IP based networks. Additionally, it would be desirable to have some guidance for transitioning from other network protocols including, but not limited to, CLNP and other commonly used network protocols. The transition plan for IPng needs to recognize the large existing infrastructure and the lack of funds for a full scale immediate transition. There will, in all likelihood, be a long period of co-existence that should be addressed.4. General Requirements The general requirements documented below are topics that the HPN working group considers to be of vital importance in a network protocol solution. It is hoped that the IPng solution will address all of these issues.4.1 Addressing The HPN working group has identified initial addressing requirements. First, a large number of addresses are required. In particular, the number of addressable entities on a single platform will range from the 100's to 100,000. The number of large platforms (ships, submarines, shore based sites) will range from a few hundred to several thousand. In addition, there will be 500 to 1000 or more small platforms, primarily aircraft. Since it is expected that in the future many of these platforms will be connected to global networks, the addresses must be globally unique. The second requirement identified is for some form of addressing structure. It is felt that this structure should be flexible enough to allow for logical structures (not necessarily geographical) to be applied. It is also felt that this is important for the implementation of efficient routing solutions. In addition, the addressing structure must support multicast group addressing. At aGreen, Irey, Marlow & O'Donoghue [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -