📄 rfc1338.txt
字号:
RFC 1338 Supernetting June 1992 the route 192.24.32.0, mask 255.255.254.0 C6: allocate 192.24.34 and 192.24.35. This block is described by the route 192.24.34.0, mask 255.255.254.0 Note that if the network provider uses an IGP which can support classless networks, he can (but doesn't have to) perform "supernetting" at the point where he connects to his clients and therefore only maintain six distinct routes for the 36 class-C network numbers. If not, explicit routes to all 36 class-C networks will have to be carried by the IGP. To make this example more realistic, assume that C4 and C5 are multi- homed through some other service provider, "RB". Further assume the existence of a client "C7" which was originally connected to "RB" but has moved to "RA". For this reason, it has a block of network numbers which are allocated out "RB"'s block of (the next) 2048 class-C network numbers: C7: allocate 192.32.0 through 192.32.15. This block is described by the route 192.32.0, mask 255.255.240.0 For the multi-homed clients, we will assume that C4 is advertised as primary via "RA" and secondary via "RB"; C5 is primary via "RB" and secondary via "RA". To connect this mess together, we will assume that "RA" and "RB" are connected via some common "backbone" provider "BB". Graphically, this simple topology looks something like this:Fuller, Li, Yu, & Varadhan [Page 16]RFC 1338 Supernetting June 1992 C1192.24.0.0 -- 192.24.7.0 \ _ 192.32.0.0 - 192.32.15.0192.24.0.0/255.255.248.0 \ / 192.32.0.0/255.255.240.0 \ / C7 C2 +----+ +----+192.24.16.0 - 192.24.31.0 \| | | |192.24.16.0/255.255.240.0 | | _ 192.24.12.0 - 192.24.15.0 _ | | | | / 192.24.12.0/255.255.252.0 \ | | C3 -| |/ C4 \| |192.24.8.0 - 192.24.11.0 | RA | | RB |192.24.8.0/255.255.252.0 | |___ 192.24.32.0 - 192.24.33.0 ___| | /| | 192.24.32.0/255.255.254.0 | | C6 | | C5 | |192.24.34.0 - 192.24.35.0 | | | |192.24.34.0/255.255.254.0 | | | | +----+ +----+ \\ \\192.24.12.0/255.255.252.0 (C4) || 192.32.12.0/255.255.252.0 (C4) ||192.24.32.0/255.255.254.0 (C5) || 192.32.32.0/255.255.192.0 (C5) ||192.32.0.0/255.255.240.0 (C7) || 192.32.0.0/255.248.0.0 (RB) ||192.24.0.0/255.248.0.0 (RA) || || VV VV +--------------- BACKBONE PEER BB ---------------+ 5.2. Routing advertisements To follow rule #1, RA will need to advertise the block of addresses that it was given and C7. Since C4 and C5 are multi-homed, they must also be advertised. Advertisements from "RA" to "BB" will be: 192.24.12.0/255.255.252.0 primary (advertises C4) 192.24.32.0/255.255.254.0 secondary (advertises C5) 192.32.0.0/255.255.240.0 primary (advertises C7) 192.24.0.0/255.248.0.0 primary (advertises remainder of RA) For RB, the advertisements must also include C4 and C5 as well as it's block of addresses. Further, RB may advertise that C7 is unreachable. Advertisements from "RB" to "BB" will be: 192.24.12.0/255.255.252.0 secondary (advertises C4) 192.24.32.0/255.255.254.0 primary (advertises C5) 192.32.0.0/255.248.0.0 primary (advertises remainder of RB)Fuller, Li, Yu, & Varadhan [Page 17]RFC 1338 Supernetting June 1992 To illustrate the problem alluded to by the "note" in section 4.2, consider what happens if RA loses connectivity to C7 (the client which is allocated out of RB's space). In a stateful protocol, RA will announce to BB that 192.32.0.0/255.255.240.0 has become unreachable. Now, when BB flushes this information out of its routing table, any future traffic sent through it for this destination will be forwarded to RB (where it will be dropped according to Rule #2) by virtue of RB's less specific match 192.32.0.0/255.248.0.0. While this does not cause an operational problem (C7 is unreachable in any case), it does create some extra traffic across "BB" (and may also prove confusing to a network manager debugging the outage with "traceroute"). A mechanism to cache such unreachability information would help here, but is beyond the scope of this document (such a mechanism is also not implementable in the near-term).6. Transitioning to a long term solution This solution does not change the Internet routing and addressing architectures. Hence, transitioning to a more long term solution is not affected by the deployment of this plan.7. Conclusions We are all aware of the growth in routing complexity, and the rapid increase in allocation of network numbers. Given the rate at which this growth is being observed, we expect to run out in a few short years. If the inter-domain routing protocol supports carrying network routes with associated masks, all of the major concerns demonstrated in this paper would be eliminated. One of the influential factors which permits maximal exploitation of the advantages of this plan is the number of people who agree to use it. It is hoped that having the IAB and the Internet society bless this plan would go a long way in the wide deployment, and hence benefit of this plan. If service providers start charging networks for advertising network numbers, this would be a very great incentive to share the address space, and hence the associated costs of advertising routes to service providers.8. Recommendations The NIC should begin to hand out large blocks of class-C addresses to network service providers. Each block must fall on bit boundaries and should be large enough to serve the provider for two years.Fuller, Li, Yu, & Varadhan [Page 18]RFC 1338 Supernetting June 1992 Further, the NIC should distribute very large blocks to continental and national network service organizations to allow additional levels of aggregation to take place at the major backbone networks. Service providers will further allocate power-of-two blocks of class-C addresses from their address space to their subscribers. All organizations, including those which are multi-homed, should obtain address space from their provider (or one of their providers, in the case of the multi-homed). These blocks should also fall on bit boundaries to permit easy route aggregation. To allow effective use of this new addressing plan to reduce propagated routing information, appropriate IETF WGs will specify the modifications needed to Inter-Domain routing protocols. Implementation and deployment of these modifications should occur as quickly as possible.9. Bibliography [RFC1247] Moy, J, "The OSPF Specification Version 2", January 1991.10. Security Considerations Security issues are not discussed in this memo.11. Authors' Addresses Vince Fuller BARRNet Pine Hall 115 Stanford, CA, 94305-4122 email: vaf@Stanford.EDU Tony Li cisco Systems, Inc. 1525 O'Brien Drive Menlo Park, CA 94025 email: tli@cisco.com Jessica (Jie Yun) Yu Merit Network, Inc. 1071 Beal Ave. Ann Arbor, MI 48109 email: jyy@merit.eduFuller, Li, Yu, & Varadhan [Page 19]RFC 1338 Supernetting June 1992 Kannan Varadhan Internet Engineer, OARnet 1224, Kinnear Road, Columbus, OH 43212 email: kannan@oar.netFuller, Li, Yu, & Varadhan [Page 20]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -