📄 rfc2491.txt
字号:
across site boundaries.) The last hop router SHALL resolve the NHRP Request from mapping information contained in its neighbor cache for the interface on which the specified target is reachable. If there is no appropriate entry in the Neighbor cache, or the destination is currently considered unreachable, the last hop router SHALL perform Neighbor Discovery on the local interface, and build the NHRP Reply from the resulting answer. (Note, in the case where the NHRP Request originated due to flow detection, there must already be a hop-by-hopArmitage, et. al. Standards Track [Page 12]RFC 2491 IPv6 over NBMA networks January 1999 flow of packets going through the last hop router towards the target. In this typical case the Neighbor cache will already have the desired information.) The NHRP Reply is propagated back to the source of the NHRP Request, using a hop-by-hop path as it would for normal NHRP. If the discovery process was triggered through flow detection at the originating router, the return of the NHRP Reply results in the following events: A Redirect is constructed using the IPv6/NBMA mapping carried in the NHRP Reply. The Redirect is unicast to the IP packet flow's source (using the VC on which the flow is arriving at the router, if it is a bi- directional pt-pt VC). Any Redirect message sent by a router MUST conform to all the rules described in [7] so that the packet is properly validated by the receiving host. Specifically, if the target of the resulting short-cut is the destination host then the ICMP Target Address MUST be the same as the ICMP Destination Address in the original message. If the target of the short-cut is an egress router then the ICMP Target Address MUST be a Link Local address of the egress router that is unique to the NBMA cloud to which the router's NBMA interface is attached. Also note that egress routers may subsequently redirect the source host. To do so, the Link Local ICMP Source Address of the Redirect message MUST be the same as the Link Local ICMP Target Address of the original Redirect message. Note that the router constructing the NHRP Reply does so using the NBMA address returned by the target host when the target host first accepted the flow of IP traffic. This retains a useful feature of Neighbor Discovery - destination interface load sharing. Upon receipt of a NHRP NAK reply or error indication for a flow- triggered shortcut attempt, no indication is sent to the source of the flow.3.2.3.1 NHRP/ND packet translation rules. The following translation rules are meant to augment the packet format specification in section 5 of the NHRP specification [8], covering those packet fields specifically utilized by the IPv6/NBMA architecture.Armitage, et. al. Standards Track [Page 13]RFC 2491 IPv6 over NBMA networks January 1999 NHRP messages are constructed and sent according to the rules in [8]. The value of the NBMA technology specific fields such as ar$afn, ar$pro.type, ar$pro.snap and link layer address format are defined in NBMA-specific companion documents. Source, destination or client protocol addresses in the common header or CIE of a NHRP message are always IPv6 addresses of length 16. When constructing an host-triggered NHRP resolution request in response to a Neighbor Solicitation: The ar$hopcnt field MUST be smaller than the shortcut limit value specified in the shortcut limit option included in the triggering NS message. This ensures that hosts have control over the reach of their shortcut request. Note that the shortcut limit given in the option is relative to the requesting host, thus the requirement of ar$hopcnt being smaller than the given shortcut limit. The Flags field in the common header of the NHRP resolution request SHOULD have the Q and S bits set. The U bit SHOULD be set. NBMA and protocol source addresses are those of the router constructing the request. The target address from the NS message is used as the NHRP destination protocol address. A CIE SHALL NOT be specified. When constructing a NHRP resolution request as a result of flow detection, the choice of values is configuration dependent. A NHRP resolution reply is build according to the rules in [8]. For each CIE returned, the holding time is 10 minutes. The MTU may be 0 or a value specified in the NBMA-specific companion document. A successful NHRP resolution reply for a host-triggered shortcut attempt is translated into an IPv6 Redirect message as follows: IP Fields: Source Address The link-local address assigned to the router's interface from which this message is sent. Destination Address IPv6 Source Address of the triggering NS Hop Limit 255Armitage, et. al. Standards Track [Page 14]RFC 2491 IPv6 over NBMA networks January 1999 ICMP Fields: Target Address NHRP Client Protocol Address Destination Address Target of triggering NS (this is equivalent to the NHRP Destination Protocol Address) Target link-layer address NHRP Client NBMA Address All NHRP extensions currently defined in [8] have no effect on NHRP/ND translation and MAY be used in NHRP messages for IPv6.3.2.3.2 NHRP Purge rules. Purges are generated by NHRP when changes are detected that invalidate a previously issued NHRP Reply (this may include topology changes, or a target host going down or changing identity). Any IPv6 shortcut previously established on the basis of newly purged information SHOULD be torn down. Routers SHALL keep track of NHRP cache entries for which they have issued Neighbor Advertisements or Router Redirects. If a NHRP Purge is received that invalidates information previously issued to local host, the router SHALL issue a Router Redirect specifying the router itself as the new best next-hop for the affected IPv6 target. Routers SHALL keep track of Neighbor cache entries that have previously been used to generate an NHRP Reply. The expiry of any such Neighbor cache entry SHALL result in a NHRP Purge being sent towards the router that originally requested the NHRP Reply.3.3. Neighbor Unreachability Detection. Neighbor Solicitations sent for the purposes of Neighbor Unreachability Detection (NUD) are unicast to the Neighbor in question, using the VC that is already open to that Neighbor. This suggests that as far as NUD is concerned, the Transient Neighbor is indistinguishable from an On-LL Neighbor.3.4. Duplicate Address Detection. Duplicate Address Detection is only required within the link-local scope, which in this case is the LL-local scope. Transient Neighbors are outside the scope of the LL. No particular interaction is required between the mechanism for establishing shortcuts and the mechanism for detection of duplicate link local addresses.Armitage, et. al. Standards Track [Page 15]RFC 2491 IPv6 over NBMA networks January 19994 Node Operation Concepts. This section describes node operations for performing basic functions (such as sending and receiving data) on a Logical Link. The application of these basic functions to the operation of the various IPv6 protocols such as Neighbor Discovery is described in Appendix A. The majority of this section applies only to NBMA networks when used to provide point to point and point to multipoint SVCs. Section 7 discusses the case where the NBMA network is being used to supply only point to point PVCs.4.1.Connecting to a Logical Link. Before a node can send or receive IPv6 datagrams its underlying IPv6/NBMA interface(s) must first join a Logical Link. An IPv6/NBMA driver SHALL establish a pt-pt VC to the MARS associated with its Logical Link, and register as a Cluster Member [5]. The node's IPv6/NBMA interface will then be a member of the LL, have a Cluster Member ID (CMI) assigned, and can begin supporting IPv6 and IPv6 ND operations. If the node is a host or router starting up it SHALL issue a single group MARS_JOIN for the following groups: - Its derived Solicited-node address(es) with link-local scope. - The All-nodes address with link-local scope. - Other configured multicast groups with at least link-local scope. If the node is a router it SHALL additionally issue: - A single group MARS_JOIN for the All-routers address with link-local scope. - A block MARS_JOIN for the range(s) of IPv6 multicast addresses (with greater than link-local scope) for which promiscuous reception is required. The encapsulation mechanism for, and key field values of, MARS control messages SHALL be defined in companion documents specific to particular NBMA network technologies.4.2 Joining a Multicast Group. This section describes the node's behavior when it gets a JoinLocalGroup request from the IPv6 Layer. The details of how this behavior is achieved are going to be implementation specific.Armitage, et. al. Standards Track [Page 16]RFC 2491 IPv6 over NBMA networks January 1999 If a JoinLocalGroup for a node-local address is received, the IPv6/NBMA driver SHALL return success indication to the caller and take no additional action. (Packets sent to node-local addresses never reach the IPv6/NBMA driver.) If a JoinLocalGroup is received for an address with greater than node-local scope, the IPv6/NBMA driver SHALL send an appropriate single group MARS_JOIN request to register this address with the MARS.4.3. Leaving a Multicast Group. This section describes the node's behavior when it gets a LeaveLocalGroup request from the IPv6 Layer. The details of how this behavior is achieved are going to be implementation specific. If a LeaveLocalGroup for a node-local address is received, the IPv6/NBMA driver SHALL return success indication to the caller and take no additional action. (Packets sent to node-local addresses never reach the IPv6/NBMA driver.) If a LeaveLocalGroup is received for an address with greater than node-local scope, the IPv6/NBMA driver SHALL send an appropriate single group MARS_LEAVE request to deregister this address with the MARS.4.4. Sending Data. Separate processing and encapsulation rules apply for outbound unicast and multicast packets.4.4.1. Sending Unicast Data. The IP level 'next hop' for each outbound unicast IPv6 packet is used to identify a pt-pt VC on which to forward the packet. For NBMA networks where LLC/SNAP encapsulation is typically used (e.g. ATM or SMDS), the IPv6 packet SHALL be encapsulated with the following LLC/SNAP header and sent over the VC. [0xAA-AA-03][0x00-00-00][0x86-DD][IPv6 packet] (LLC) (OUI) (PID) For NBMA networks that do not use LLC/SNAP encapsulation, an alternative rule SHALL be specified in the NBMA-specific companion document.Armitage, et. al. Standards Track [Page 17]RFC 2491 IPv6 over NBMA networks January 1999 If no pt-pt VC exists for the next hop address for the packet, the node SHALL place a call to set up a VC to the next hop destination. Any time the IPv6/NBMA driver receives a unicast packet for transmission the IPv6 layer will already have determined the link- layer (NBMA) address of the next hop. Thus, the information needed to place the NBMA call to the next hop will be available. The sending node SHOULD queue the packet that triggered the call request, and send it when the call is established. If the call to the next hop destination node fails the sending node SHALL discard the packet that triggered the call setup. Persistent failure to create a VC to the next hop destination will be detected and handled at the IPv6 Network Layer through NUD. At this time no rules are specified for mapping outbound packets to VCs using anything more than the packet's destination address.4.4.2. Sending Multicast Data. The IP level 'next hop' for each outbound multicast IPv6 packet is used to identify a pt-pt or pt-mpt VC on which to forward the packet. For NBMA networks where LLC/SNAP encapsulation is typically used (e.g. ATM or SMDS), multicast packets SHALL be encapsulated in the following manner: [0xAA-AA-03][0x00-00-5E][0x00-01][pkt$cmi][0x86DD][IPv6 packet] (LLC) (OUI) (PID) (mars encaps) The IPv6/NBMA driver's Cluster Member ID SHALL be copied into
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -