📄 rfc2215.txt
字号:
service-specific value to the next-hop node. 5. If the arriving value is a global value for a general parameter (parameter_number is 127 or less, and the service_number is 1), and the local implementation of *any* service exports a service- specific value for that general parameter, compose the arriving (global) value with the service-specific value for that parameter exported by the local service, and pass the result as a service- specific value to the next-hop node. This will require adding a new data field to the message passed to the next hop, to hold the newly generated service-specific value. Repeat this process for each service that exports a service-specific value for the parameter. 6. If the arriving value is a global value for a general parameter (the service_number is 1, and the parameter_number is 127 or less), compose the arriving (global) value with the global parameter value exported by the local node, and pass the result as a global (service 1) value to the next-hop node. This step is performed whether or not any service-specific values were generated and exported in step 5.3. General Parameter Definitions 3.1 NON-IS_HOP flag parameter This parameter provides information about the presence of network elements which do not implement QoS control services along the data path. The local value of the parameter is 1 if the network element does not implement the relevant QoS control service, or knows that there is a break in the chain of elements which implement the service. The local parameter is 0 otherwise. The local parameter is assigned parameter_number 1.Shenker & Wroclawski Standards Track [Page 6]RFC 2215 General Characterization Parameters September 1997 The composition rule for this parameter is the OR function. A composed parameter value of 1 arriving at the endpoint of a path indicates that at least one point along the path does not offer the indicated QoS control service. The parameter_number for the composed quantity is 2. The global NON_IS_HOP flag parameter thus has the ID <1,2>. If this flag is set, it indicates that one or more network elements along the application's data path does not support the integrated services framework at all. An example of such an element would be an IP router offering only best-effort packet delivery and not supporting any resource reservation requests. Obviously, a network element which does not support this specification will not know to set this flag. The actual responsibility for determining that a network node does not support integrated services may fall to the network element, the setup protocol, or a manual configuration operation and is dependent on implementation and usage. This calculation must be conservative. For example, a router sending packets into an IP tunnel must assume that the tunneled packets will not receive QoS control services unless it or the setup protocol can prove otherwise. Service-specific versions of the NON_IS_HOP flag indicate that one or more network elements along a path don't support the particular service. For example, the flag parameter identified by ID <2,2> being set indicates that some network element along the path does not support the Guaranteed service, though it might support another service such as Controlled-Load. If the global NON_IS_HOP flag <1,2> is set for a path, the receiver (network element or application) should consider the values of all other parameters defined in this specification, including service- specific NON_IS_HOP flags, as possibly inaccurate. If a service specific NON_IS_HOP flag is set for a path, the receiver should consider the values of all other parameters associated with that service as possibly inaccurate. The NON_IS_HOP parameter may be represented in any form which can express boolean true and false. However, note that a network element must set this flag precisely when it does *not* fully understand the format or data representation of an arriving protocol message (because it does not support the specified service). Therefore, the data representation used for this parameter by setup and management protocols must allow the parameter value to be read and set even if the network element cannot otherwise parse the protocol message.Shenker & Wroclawski Standards Track [Page 7]RFC 2215 General Characterization Parameters September 1997 An appropriate XDR description of this parameter is: bool NON_IS_HOP; However, the standard XDR data encoding for this description will not meet the requirement described above unless other restrictions are placed on message formats. An alternative data representation may be more appropriate. NOTE: The message format described for RSVP in [RFC 2210] carries this parameter as a single-bit flag, referred to as the "break bit". 3.2 NUMBER_OF_IS_HOPS IS stands for "integrated services aware". An integrated services aware network element is one that conforms to the various requirements described in this and other referenced documents. The network element need not offer a specific service, but if it does it must support and characterize the service in conformance with the relevant specification, and if it does not it must correctly set the NON_IS_HOP flag parameter for the service. For completeness, the local parameter is assigned the parameter_number 3. The composition rule for this parameter is to increment the counter by one at each IS-aware hop. This quantity, when composed end-to- end, informs the endpoint of the number of integrated-services aware network elements traversed along the path. The parameter_number for this composed parameter is 4. Values of the composed parameter will range from 1 to 255, limited by the bound on IP hop count. The XDR representation of this parameter is: unsigned int NUMBER_OF_IS_HOPS; 3.3. AVAILABLE_PATH_BANDWIDTH This parameter provides information about the bandwidth available along the path followed by a data flow. The local parameter is an estimate of the bandwidth the network element has available for packets following the path. Computation of the value of this parameter should take into account all information available to the network element about the path, taking into consideration administrative and policy controls on bandwidth, as well as physical resources.Shenker & Wroclawski Standards Track [Page 8]RFC 2215 General Characterization Parameters September 1997 NOTE: This parameter should reflect, as closely as possible, the actual bandwidth available to packets following a path. However, the bandwidth available may depend on a number of factors not known to the network element until a specific QoS request is in place, such as the destination(s) of the packet flow, the service to be requested by the flow, or external policy information associated with a reservation request. Because the parameter must in fact be provided before any specific QoS request is made, it is frequently difficult to provide the parameter accurately. In circumstances where the parameter cannot be provided accurately, the network element should make the best attempt possible, but it is acceptable to overestimate the available bandwidth by a significant amount. The parameter_number for AVAILABLE_PATH_BANDWIDTH is 5. The global parameter <1, 5> is an estimate of the bandwidth available to any packet following the path, without consideration of which (if any) QoS control service the packets may be subject to. In cases where a particular service is administratively or technically restricted to a limited portion of the overall available bandwidth, the service module may wish to export an override parameter which specifies this smaller bandwidth value. The composition rule for this parameter is the MIN function. The composed value is the minimum of the network element's value and the previously composed value. This quantity, when composed end-to-end, informs the endpoint of the minimal bandwidth link along the path from sender to receiver. The parameter_number for the composed minimal bandwidth along the path is 6. Values of this parameter are measured in bytes per second. The representation must be able to express values ranging from 1 byte per second to 40 terabytes per second, about what is believed to be the maximum theoretical bandwidth of a single strand of fiber. Particularly for large bandwidths, only the first few digits are significant, so the use of a floating point representation, accurate to at least 0.1%, is encouraged. The XDR representation for this parameter is: float AVAILABLE_PATH_BANDWIDTH; For values of this parameter only valid non-negative floating point numbers are allowed. Negative numbers (including "negative zero"), infinities, and NAN's are not allowed.Shenker & Wroclawski Standards Track [Page 9]RFC 2215 General Characterization Parameters September 1997 NOTE: An implementation which utilizes general-purpose hardware or software IEEE floating-point support may wish to verify that arriving parameter values meet these requirements before using the values in floating-point computations, in order to avoid unexpected exceptions or traps. If the network element cannot or chooses not to provide an estimate of path bandwidth, it may export a local value of zero for this parameter. A network element or application receiving a composed value of zero for this parameter must assume that the actual bandwidth available is unknown. 3.4 MINIMUM_PATH_LATENCY The local parameter is the latency of the packet forwarding process associated with the network element, where the latency is defined to be the *smallest* possible packet delay added by the network element. This delay results from speed-of-light propagation delay, from packet processing limitations, or both. It does not include any variable queuing delay which may be present. The purpose of this parameter is to provide a baseline minimum path latency for use with services which provide estimates or bounds on additional path delay, such as Guaranteed [RFC 2212]. Together with the queuing delay bound offered by Guaranteed and similar services, this parameter gives the application knowledge of both the minimum and maximum packet delivery delay. Knowing both the minimum and maximum latency experienced by data packets allows the receiving application to accurately compute its de-jitter buffer requirements. Note that the quantity characterized by this parameter is the absolute smallest possible value for the packet processing and transmission latency of the network element. This value is the quantity required to provide the end hosts with jitter bounds. The parameter does *not* provide an upper-bound estimate of minimum latency, which might be of interest for best-effort traffic and QoS control services which do not explicitly offer delay bounds. In other words, the parameter will always underestimate, rather than overestimate, latency, particularly in multicast and large cloud situations. When packets traversing a network element may experience different minimal latencies over different paths, this parameter should, if possible, report an accurate latency value for each path. For example, when an ATM point-multipoint virtual circuit is used to implement IP multicast, the mechanism that implements this parameter for the ATM cloud should ideally compute a separate value for each destination. Doing this may require cooperation between the ingressShenker & Wroclawski Standards Track [Page 10]RFC 2215 General Characterization Parameters September 1997 and egress elements bounding the multi-access communication cloud. The method by which this cooperation is achieved, and the choice of which IP-level network element actually provides and composes the value, is technology-dependent. An alternative choice is to provide the same value of this parameter for all paths through the cloud. The value reported must be the smallest latency for any possible path. Note that in this situation, QoS control services (e.g., Guaranteed) which provide an upper bound on latency cannot simply add their queuing delay to the value computed by this parameter; they must also compensate for path delays above the minimum. In this case the range between the minimum and maximum packet delays reported to the application may be larger than actually occurs, because the application will be told about the minimum delay along the shortest path and the maximum delay along the actual path. This is acceptable in most situations. A third alternative is to report the "indeterminate" value, as specified below. In this circumstance the client application may either deduce a minimum path latency through measurement, or assume a value of zero. The composition rule for this parameter is summation with a clamp of (2**32 - 1) on the maximum value. This quantity, when composed end- to-end, informs the endpoint of the minimal packet delay along the path from sender to receiver. The parameter_number for the latency of the network element's link is 7. The parameter_number for the cumulative latency along the path is 8. The latencies are reported in units of one microsecond. An individual element can advertise a latency value between 1 and 2**28 (somewhat over two minutes) and the total latency added across all elements can range as high as (2**32)-2. If the sum of the different elements delays exceeds (2**32)-2, the end-to-end advertised delay should be
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -