📄 rfc2894.txt
字号:
Sequence Number. This is a safe operation only when all cryptographic keys previously used to authenticate RR Commands have expired or been revoked. For this reason, the Sequence Number Reset message is defined to accomplish both functions. When a Sequence Number Reset (SNR) has been authenticated and has passed the header check, the router MUST invalidate all keys which have been used to authenticate previous RR Commands, including the key which authenticated the SNR itself. Then it MUST discard any saved RR Result messages, clear the list of recorded SegmentNumbers and reset the Recorded Sequence Number to zero. If the router has no other, unused authentication keys already available for Router Renumbering use it SHOULD establish one or more new valid keys. The details of this process will depend on whether manual keying or a key management protocol is used. In either case, if no keys are available, no new Commands can be processed. A SNR message SHOULD contain no PCOs, since they will be ignored. If and only if the R flag is set in the SNR message, a router MUST respond with a Result Message containing no Match Reports. The header and transmission of the Result are as described in section 3. The invalidation of authentication keys caused by a valid SNR message will cause retransmitted copies of that message to be ignored.Crawford Standards Track [Page 18]RFC 2894 Router Renumbering for IPv6 August 20006. IANA Considerations Following the policies outlined in [IANACON], new values of the Code field in the Router Renumbering Header (section 3.1) and the OpCode field of the Match-Prefix Part (section 3.2.1.1) are to be allocated by IETF consensus only.7. Security Considerations The Router Renumbering mechanism proposed here is very powerful and prevention of spoofing it is important. Replay of old messages must, in general, be prevented (even though a narrow class of messages exists for which replay would be harmless). What constitutes a sufficiently strong authentication algorithm may change from time to time, but algorithms should be chosen which are strong against current key-recovery and forgery attacks. Authentication keys must be as well protected as any other access method that allows reconfiguration of a site's routers. Distribution of keys must not expose them or permit alteration, and key validity must be limited in terms of time and number of messages authenticated. Note that although a reset of the Recorded Sequence Number requires the cancellation of previously-used authentication keys, introduction of new keys and expiration of old keys does not require resetting the Recorded Sequence Number.7.1. Security Policy and Association Database Entries The Security Policy Database (SPD) [IPSEC] of a router implementing this specification MUST cause incoming Router Renumbering Command packets to either be discarded or have IPsec applied. (The determination of "discard" or "apply" MAY be based on the source address.) The resulting Security Association Database (SAD) entries MUST ensure authentication and integrity of the destination address and the RR Header and Message Body, and the body length implied by the IPv6 length and intervening extension headers. These requirements are met by the use of the Authentication Header [AH] in transport or tunnel mode, or the Encapsulating Security Payload [ESP] in tunnel mode with non-NULL authentication. The mandatory-to- implement IPsec authentication algorithms (other than NULL) seem strong enough for Router Renumbering at the time of this writing. Note that for the SPD to distinguish Router Renumbering from other ICMP packets requires the use of the ICMP Type field as a selector. This is consistent with, although not mentioned by, the Security Architecture specification [IPSEC].Crawford Standards Track [Page 19]RFC 2894 Router Renumbering for IPv6 August 2000 At the time of this writing, there exists no multicast key management protocol for IPsec and none is on the horizon. Manually configured Security Associations will therefore be common. The occurrence of "from traffic" in the table below would therefore more realistically be a wildcard or a fixed range. Use of a small set of shared keys per management station suffices, so long as key distribution and storage are sufficiently safeguarded. A sufficient set of SPD entries for incoming traffic could select Field SPD Entry SAD Entry ------- --------- --------- Source wildcard from traffic Destination wildcard from SPD Transport ICMPv6 from SPD ICMP Type Rtr. Renum. from SPD Action Apply IPsec SA Spec AH/Transport Mode or there might be an entry for each management station and/or for each of the router's unicast addresses and for each of the defined All-Routers multicast addresses, and a final wildcard entry to discard all other incoming RR messages. The SPD and SAD are conceptually per-interface databases. This fact may be exploited to permit shared management of a border router, for example, or to discard all Router Renumbering traffic arriving over tunnels.8. Implementation and Usage Advice for Reliability Users of Router Renumbering will want to be sure that every non- trivial message reaches every intended router. Well-considered exploitation of Router Renumbering's retransmission and response- directing features should make that goal achievable with high confidence even in a minimally reliable network. In one set of cases, probably the majority, the network management station will know the complete set of routers under its control. Commands can be retransmitted, with the "R" (Reply-requested) flag set in the RR header, until Results have been collected from all routers. If unicast Security Associations (or the means for creating them) are available, the management station may switch from multicast to unicast transmission when the number of routers still unheard-from is suitably small.Crawford Standards Track [Page 20]RFC 2894 Router Renumbering for IPv6 August 2000 To maintain a list of managed routers, the management station can employ any of several automatic methods which may be more convenient than manual entry in a large network. Multicast RR "Test" commands can be sent periodically and the results archived, or the management station can use SNMP to "peek" into a link-state routing protocol such as OSPF [OSPFMIB]. (In the case of OSPF, roughly one router per area would need to be examined to build a complete list of routers.) In a large dynamic network where the set of managed routers is not known but reliable execution is desired, a scalable method for achieving confidence in delivery is described here. Nothing in this section affects the format or content of Router Renumbering messages, nor their processing by routers. A management station implementing these reliability mechanisms MUST alert an operator who attempts to commence a set of Router Renumbering Commands when retransmission of a previous set is not yet completed, but SHOULD allow the operator to override the warning.8.1. Outline and Definitions The set of routers being managed with Router Renumbering is considered as a set of populations, each population having a characteristic probability of successful round-trip delivery of a Command/Result pair. The goal is to estimate a lower bound, P, on the round-trip probability for the whole set. With this estimate and other data about the responses to retransmissions of the Command, a confidence level can be computed for hypothesis that all routers have been heard from. If the true probability of successful round-trip communication with a managed router were a constant, p, for all managed routers then an estimate P of p could be derived from either of these statistics: The expected ratio of the number of routers first heard from after transmission (N + 1) to the number first heard from after N is (1 - p). When N different routers have been heard from after M transmissions of a Command, the expected total number of Result messages received is pNM. If R is the number of Results actually received, then P = R/MN. The two methods are not equivalent. The first suffers numerical problems when the number of routers still to be heard from gets small, so the P = R/MN estimate should be used.Crawford Standards Track [Page 21]RFC 2894 Router Renumbering for IPv6 August 2000 Since the round-trip probability is not expected to be uniform in the real world, and the less-reliable units are more important to a lower-bound estimate but more likely to be missed in sampling, the sample from which P is computed is biased toward the less-reliable routers. After the Nth transmission interval, N > 2, neglect all routers heard from in intervals 1 through F from the reliability estimate, where F is the greatest integer less than one-half of N. For example, after five intervals, only routers first heard from in the third through fifth intervals will be counted. A management station implementing the methods of this section should allow the user to specify the following parameters, and default them to the indicated values. Ct The target delivery confidence, default 0.999. Pp A presumptive, pessimistic initial estimate of the lower bound of the round-trip probability, P, to prevent early termination. (See below.) Default 0.75. Ti The initial time between Command retransmissions. Default 4 seconds. MaxDelay milliseconds (see section 3.1) must be added to the retransmission timer. Knowledge of the routers' processing time for RR Commands may influence the setting of Ti. Ti+MaxDelay is also the minimum time the management station must wait for Results after each transmission before computing a new confidence level. The phrase "end of the Nth interval" means a time Ti+MaxDelay after the Nth transmission of a Command. Tu The upper bound on the period between Command retransmissions. Default 512 seconds. The following variables, some a function of the retransmission counter N, are used in the next section. T(N) The time between Command transmissions N and N+1 is V*T(N) + MaxDelay, where V is random and roughly uniform in the range [0.75, 1.0]. T(1) = Ti and for N > 1, T(N) = min(2*T(N-1), Tu). M(N) The cumulative number of distinct routers from which replies have been received to any of the first N transmissions of the Command.Crawford Standards Track [Page 22]RFC 2894 Router Renumbering for IPv6 August 2000 F=F(N) FLOOR((N-1)/2). All routers from which responses were received in the first F intervals will be effectively omitted from the estimate of the round-trip probability computed at the Nth interval. R(N,F) The total number of RR Result messages, including duplicates, received by the end of the Nth interval from those routers which were NOT heard from in any of the first F intervals. p(N) The estimate of the worst-case round-trip delivery probability. c(N) The computed confidence level. An asterisk (*) is used to denote multiplication and a caret (^) denotes exponentiation. If the difference in reliability between the "good" and "bad" parts of a managed network is very great, early c(N) values will be too high. Retransmissions should continue for at least Nmin = log(1- Ct)/log(1-Pp) intervals, regardless of the current confidence estimate. (In fact, there's no need to compute p(N) and c(N) until after Nmin intervals.)8.2. Computations Letting A = N*(M(N)-M(F))/R(N,F) for brevity, the estimate of the round-trip delivery probability is p(N) = 1-Q, where Q is that root of the equation Q^N - A*Q + (A-1) = 0 which lies between 0 and 1. (Q = 1 is always a root. If N is odd there is also a negative root.) This may be solved numerically, for example with Newton's method (see any standard text, for example [ANM]). The first-order approximation Q1 = 1 - 1/A may be used as a starting point for iteration. But Q1 should NOT be used as an approximate solution as it always underestimates Q, and hence overestimates p(N), which would cause an overestimate of the confidence level. If necessary, the spurious root Q = 1 can be divided out, leaving Q^(N-1) + Q^(N-2) + ... + Q - (A-1) = 0Crawford Standards Track [Page 23]RFC 2894 Router Renumbering for IPv6 August 2000 as the equation to solve. Depending on the numerical method used, this could be desirable as it's just possible (but very unlikely) that A=N and so Q=1 was a double root of the earlier equation. After N > 2 (or N >= Nmin) intervals have been completed, Compute the lower-bound reliability estimate p(N) = R(N,F)/((N-F)*(M(N) - M(F))). Compute the confidence estimate c(N) = (1 - (1-p(N))^N)^(M(N) - M(F) + 1). which is the Bayesian probability that M(N) is the number of routers
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -