📄 rfc2194.txt
字号:
flags in the phone book) The dial-up connection properties configuration (this is the DUN connectoid name) The phone book file is a comma delimited ASCII file containing the following data: Unique number identifying a particular record (Index) Country ID A zero-base index into the region file City Area code Local phone number Minimum Speed Maximum speed Capability Flags: Bit 0: 0=Toll, 1=Toll free Bit 1: 0=X25, 1=IP Bit 2: 0=Analog, 1=No analog support Bit 3: 0=no ISDN support, 1=ISDN Bit 4: 0 Bit 5: 0 Bit 6: 0=No Internet access, 1=Internet access Bit 7: 0=No signup access, 1=Signup access Bit 8-31: reserved The filename of the dialup network file (typically refers to a script associated with the number)Aboba, et. al. Informational [Page 17]RFC 2194 Review of Roaming Implementations September 1997 A sample phone book file is shown below: 65031,1,1,Aniston,205,5551212,2400,2400,1,0,myfile 200255,1,1,Auburn/Opelika,334,5551212,9600,28800,0,10, 200133,1,1,Birmingham,205,5551212,9600,28800,0,10, 130,1,1,Birmingham,205,3275411,9600,14400,9,0,yourfile 65034,1,1,Birmingham,205,3285719,9600,14400,1,0,myfile7.2.3. Additional attributes As described previously, it is likely that some ISPs will require additional phone number attributes or provider information beyond that supported in the default phone book format. Attributes of interest may vary between providers, or may arise as a result of the introduction of new technologies. As a result, the set of phone number attributes is likely to evolve over time, and extensibility in the phone book format is highly desirable. For example, in addition to the attributes provided in the default phone book, the following additional attributes have been requested by customers: Multicast support flag External/internal flag (to differentiate display between the "internal" or "other" list box) Priority (for control of presentation order) Modem protocol capabilities (V.34, V.32bis, etc.) ISDN protocol capabilities (V.110, V.120, etc.) No password flag (for numbers using telephone-based billing) Provider name7.2.4. Addition of information on providers The default phone book does not provide a mechanism for display of information on the individual ISPs within the roaming consortium, only for the consortium as a whole. For example, the provider icons (big and little) are included in the service profile. The service description information is expected to contain the customer support number. However, this information cannot be provided on an individual basis for each of the members of a roaming consortium. Additional information useful on a per-provider basis would include: Provider voice phone number Provider icon Provider fax phone number Provider customer support phone numberAboba, et. al. Informational [Page 18]RFC 2194 Review of Roaming Implementations September 19977.3. Phone number exchange Currently phone number exchange is not supported by the phone book server. As a result, in the MSN implementation, phone number exchange is handled manually. As new POPs come online, the numbers are forwarded to MSN, which tests the numbers and approves them for addition to the phone book server. Updated phone books are produced and loaded on the phone book server on a weekly basis.7.4. Phone book compilation The Phone Book Manager tool was created in order to make it easier for the access partners to create and update their phone books. It supports addition, removal, and editing of phone numbers, generating both a new phone book, as well as associated difference files. With version 1 of the Phone Book Administration tool, phone books are compiled manually, and represent a concatenation of available numbers from all partners, with no policy application. With version 1, the updates are prepared by the partners and forwarded to MSN, which tests the numbers and approves them for addition to the phone book. The updates are then concatenated together to form the global update file. The new version of the Phone Book Administration tool automates much of the phone book compilation process, making it possible for phone book compilation to be decentralized with each partner running their own phone book server. Partners can then maintain and test their individual phone books and post them on their own Phone Book Server.7.5. Phone book update There is a mechanism to download phone book deltas, as well as to download arbitrary executables which can perform more complex update processing. Digital signatures are only used on the downloading of executables, since only these represent a security threat - the Connection Manager client does not check for digital signatures on deltas because bogus deltas can't really cause any harm. The Connection Manager updates the phone book each time the user logs on. This is accomplished via an HTTP GET request to the phone book server. When the server is examining the request, it can take into account things like the OS version on the client, the language on the client, the version of Connection Manager on the client, and the version of the phone book on the client, in order to determine what it wants to send back.Aboba, et. al. Informational [Page 19]RFC 2194 Review of Roaming Implementations September 1997 In the GET response, the phone book server responds with the difference files necessary to update the client's phone book to the latest version. The client then builds the new phone book by successively applying these difference files. This process results in the update of the entire phone book, and is simple enough to allow it to be easily implemented on a variety of HTTP servers, either as a CGI script or (on NT) as an ISAPI DLL. The difference files used in the default phone book consist of a list of phone book entries, each uniquely identified by their index number. Additions consist of phone book entries with all the information filed in; deletions are signified by entries with all entries zeroed out. A sample difference file is shown below: 65031,1,1,Aniston,205,5551212,2400,2400,1,0,myfile 200255,1,1,Auburn/Opelika,334,5551212,9600,28800,0,10, 200133,0,0,0,0,0,0,0,0,0 130,1,1,Birmingham,205,5551211,9600,14400,9,0,yourfile 65034,1,1,Birmingham,205,5551210,9600,14400,1,0,myfile7.6. Connection management The Connection Manager can support any protocol which can be configured via use of Windows Dialup Networking, including PPP and SLIP running over IP. The default setting is for the IP address as well as the DNS server IP address to be assigned by the NAS. The DNS server assignment capability is described in [1].7.7. Authentication The Connection Manager client and RADIUS proxy/server both support suffix style notation (i.e. "aboba@msn.com"), as well as a prefix notation ("MSN/aboba"). The prefix notation was developed for use with NAS devices with small maximum userID lengths. For these devices the compactness of the prefix notation significantly increases the number of characters available for the userID field. However, as an increasing number of NAS devices are now supporting 253 octet userIDs (the maximum supported by RADIUS) the need for prefix notation is declining. After receiving the userID from the Connection Manager client, the NAS device passes the userID/domain and password information (or in the case of CHAP, the challenge and the response) to the RADIUSAboba, et. al. Informational [Page 20]RFC 2194 Review of Roaming Implementations September 1997 proxy. The RADIUS proxy then checks if the domain is authorized for roaming by examining a static configuration file. If the domain is authorized, the RADIUS proxy then forwards the request to the appropriate RADIUS server. The domain to server mapping is also made via a static configuration file. While static configuration files work well for small roaming consortia, for larger consortia static configuration will become tedious. Potentially more scalable solutions include use of DNS SRV records for the domain to RADIUS server mapping.7.8. NAS configuration/authorization Although the attributes returned by the home RADIUS server may make sense to home NAS devices, the local NAS may be configured differently, or may be from a different vendor. As a result, it may be necessary for the RADIUS proxy to edit the attribute set returned by the home RADIUS server, in order to provide the local NAS with the appropriate configuration information. The editing occurs via attribute discard and insertion of attributes by the proxy. Alternatively, the home RADIUS server may be configured not to return any network-specific attributes, and to allow these to be inserted by the local RADIUS proxy. Attributes most likely to cause conflicts include: Framed-IP-Address Framed-IP-Netmask Framed-Routing Framed-Route Filter-Id Vendor-Specific Session-Timeout Idle-Timeout Termination-Action Conflicts relating to IP address assignment and routing are very common. Where dynamic address assignment is used, an IP address pool appropriate for the local NAS can be substituted for the IP address pool designated by the home RADIUS server. However, not all address conflicts can be resolved by editing. In some cases, (i.e., assignment of a static network address for a LAN) it may not be possible for the local NAS to accept the home RADIUS server's address assignment, yet the roaming hosts may not be able to accept an alternative assignment. Filter IDs also pose a problem. It is possible that the local NAS may not implement a filter corresponding to that designated by the home RADIUS server. Even if an equivalent filter is implemented, in order to guarantee correct operation, the proxy's configuration must track changes in the filter configurations of each of the members of theAboba, et. al. Informational [Page 21]RFC 2194 Review of Roaming Implementations September 1997 roaming consortium. In practice this is likely to be unworkable. Direct upload of filter configuration is not a solution either, because of the wide variation in filter languages supported in today's NAS devices. Since by definition vendor specific attributes have meaning only to devices created by that vendor, use of these attributes is problematic within a heterogeneous roaming consortium. While it is possible to edit these attributes, or even to discard them or allow them to be ignored, this may not always be acceptable. In cases where vendor specific attributes relate to security, it may not be acceptable for the proxy to modify or discard these attributes; the only acceptable action may be for the local NAS to drop the user. Unfortunately, RADIUS does not distinguish between mandatory and optional attributes, so that there is no way for the proxy to take guidance from the server. Conflicts over session or idle timeouts may result if since both the local and home ISP feel the need to adjust these parameters. While the home ISP may wish to adjust the parameter to match the user's software, the local ISP may wish to adjust it to match its own service policy. As long as the desired parameters do not differ too greatly, a compromise is often possible.7.9. Address assignment and routing While the Connection Manager software supports both static and dynamic address assignment, in the MSN implementation, all addresses are dynamically assigned. However, selected partners also offer LAN connectivity to their customers, usually via static address assignment. However, these accounts do not have roaming privileges since no mechanism has been put in place for allowing these static routes to move between providers. Users looking to do LAN roaming between providers are encouraged to select a router supporting Network Address Translation (NAT). NAT versions implemented in several low-end routers are compatible with the dynamic addressing used on MSN, as well as supporting DHCP on the LAN side.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -