📄 rfc1575.txt
字号:
a) The information available to the packet composition function (ISO 8473) consists of current state, local information, and information supplied by system management. b) The source and destination address fields of the echo-request packet shall contain, respectively, a Network entity title (NET) of the originating network-entity and a Network entity title of the destination network-entity (which may be in either an end system or an intermediate system). NOTE: A Network entity title is syntactically indistinguishable from an NSAP address. The additional information in an NSAP address, if any, beyond that which is present in a Network entity title, is relevant only to the operation of the packet decomposition function in a destination end system, and therefore is not needed for the processing of an echo-request packet (from which no N-UNITDATA indication is ever produced). The fact that the source and destination address fields of the echo-request packet contain NETs rather than NSAP addresses therefore does not affect the processing of an echo-request packet by any network-entity. c) When an echo-request packet has reached its destination, as determined by the Header processing (call HEADER FORMAT Analysis function in ISO 8473), the echo-response function shall handle this Network Protocol Data Units (NPDU) instead of the packetHares & Wittbrodt [Page 5]RFC 1575 An Echo Function for CLNP (ISO 8473) February 1994 decomposition function. In ISO 8473, the packet decomposition function is like a decomposing fish on the sea shore - it takes a packet down to its bare bones and processes it. Also, it is up to each individual system whether or not handling echo-request packets involves system management. One example of involving system management is the reporting reception of the echo packets as some systems do with the ping packet. Some systems find this of value if they are being pinged to death. d) The maximum length of the echo-request packet is equal to the maximum length of the echo-response packet minus the maximum length of the echo-response packet header. This ensures that the entire echo-request packet can be contained within the data field of the echo-response packet (see ISO 8473). e) The data part of the echo-request packet may, as a local matter, contain zero or more octets with any values that fit within the echo-request packet. (see (d) above for maximum length of the echo-request packet). If the first octet of data is binary 1000 0001, then an echo-response header is contained in the echo- request packet. The existence of this header insures that a router can formulate a standard echo-response packet. Normally, the "more segmentation" flag in the encapsulated echo- response packet header shall be zero, and the segmentation portion of the encapsulated packet shall not be included. The segmentation length in the echo-response packet header shall be zero. If the "more segmentation" flag is set in the encapsulated echo- response packet header, then a segmentation length shall be filled in and the segmentation part of the echo-response packet header will be present in the echo-response header. This same segmentation function shall be present in the echo-response sent by the router. NOTE: However, this formulated echo-response is not required between any two systems. With a common format for an echo-request packet used in an environment such as the Internet, the echo-response header may not be needed, and may in fact be unnecessary overhead.5.5. Echo-response function This function is performed by a network-entity when it has received an echo-request packet that has reached its destination, as determined by the Header format analysis function (ISO 8473 clause 6.3) that is, an echo-request packet which contains, in its destination address field, a Network entity title that identifies the network-entity. When invoked, the echo-response function causes anHares & Wittbrodt [Page 6]RFC 1575 An Echo Function for CLNP (ISO 8473) February 1994 echo-response (ERP) packet to be created. The echo-response packet shall be constructed and processed by ISO 8473 network-entities in end systems and intermediate systems in exactly the same way as the data packet, with the following caveats: a) The information available to the packet composition function consists of current state, local information, and information contained in the corresponding echo-request packet. b) The source address field of the echo-response packet shall contain the value of the destination address field of the corresponding echo-request packet. The destination address field of the echo-response packet shall contain the value of the source address field of the corresponding echo-request packet. c) The echo-request packet, in its entirety, shall be placed into the data part of the echo-response packet. The data part of the echo-response packet shall contain only the corresponding echo- request packet. d) If the data part of the echo-request packet contains an echo- response header, the packet composition function may, but is not required to, use some or all of the information contained therein to select values for the fields of the echo-response packet header. In this case, however, the value of the lifetime field contained in the echo-response packet header in the echo-request packet data part must be used as the value of the lifetime field in the echo-response packet. The values of the segment length and checksum fields shall be computed by the network-entity regardless of the contents of those fields in the echo-response packet header in the data part of the echo-request packet. e) The options part of the echo-response packet may contain any (or none) of the options described in ISO 8473 (but see Section 5.7 of this RFC). The values for these options, if present, are determined by the network-entity as a local matter. They may be, but are not required to be, either identical to or derived from the corresponding options in the echo-request packet and/or the echo-response packet header contained in the data part of the echo-request packet (if present). The source routing option in the echo-response packet shall not be identical to (copied from) the source routing option in the echo-request packet header. If the recording of route option in the echo-response packet is identical to (copied from) the recording of route option in the echo-request packet header, the second octet of the parameter value field shall be set to the value 3.Hares & Wittbrodt [Page 7]RFC 1575 An Echo Function for CLNP (ISO 8473) February 1994 f) It is a local matter whether or not the destination network- entity performs the lifetime control function on an echo-request packet before performing the echo-response function. The destination network-entity shall make the same decision in this regard that it would make, as a local matter, for a data packet in accordance with ISO 8473.5.6. Use of the Priority Option The 8473 priority function indicates the relative priority of packet. 0 is normal and 14 is the highest. Packets with higher values will be transmitted before lower values. The specific action upon receiving a 8473 packet with the priority field set is a "LOCAL MATTER". These means, any two systems could do it differently. Hopefully, in the future, Internet routers will handle this as a priority queueing function. Some implementors consider the priority queueing function to be a cap. For example, if a router is congested, all those packets with priorities higher than 20, will be allowed through, and those with priority less than 20 will be dropped. In short, the basic function of priority has wide latitude in the ISO specification. This wide latitude of implementation needs to be narrowed for implementations within a common network environment such as the Internet. The 8473 priority function is rarely implemented in today's Internet. The transmission of an echo-request packet with a priority set may provided unexcepted results until a more wide spread deployment of the priority feature in 8473 capable routers and end systems. However, if the priority function must be used it is the safest value may be the value 0 - which indicates Normal priority. It most likely this value will follow the 8473 pathways. In the future, as the implementation of the priority function further Internet documents will need to deal with its expected use.5.7. Use of the Source Route Option Use of the source route option in ISO 8473 may cause packets to loop until their lifetime expires. For this reason, this memo recommends against the use of the source route option in either an echo-request or echo-response packets. If the source route option is used to specify the route that the echo-request packet takes toward its destination, this memo does not recommend the use of anHares & Wittbrodt [Page 8]RFC 1575 An Echo Function for CLNP (ISO 8473) February 1994 automatically generated source route on the echo-response packet.5.8. Transmission of Multiple Echo-Requests The echo function may be utilized by more than one process on any individual machine. The mechanism by which multiple echo-requests and echo-responses are correlated between multiple processes on a single machine is a local matter and not defined by this memo.6. Security Considerations Security issues are not discussed in this memo.7. Authors' Addresses Susan K. Hares MERIT/NSFNET Internet Engineering 1075 Beal Avenue Ann Arbor, MI 48109-2112 Phone: (313) 936-3000 EMail: skh@merit.edu Cathy J. Wittbrodt Stanford University/BARRNet Networking Systems Pine Hall 115 Stanford, CA 94305 Phone: (415) 725-5481 EMail: cjw@magnolia.Stanford.EDU8. References [1] ISO/IEC. Protocol for Providing the Connectionless-mode Network Service. International Standard 8473, ISO/IEC JTC 1, Switzerland, 1986. [2] Hagens, R., "An Echo Function for ISO 8473", RFC 1139, IETF-OSI Working Group, January 1990. [3] ISO 8473-1993 Protocol for providing the connectionless-mode network service, edition 2 (IS under preparation).Hares & Wittbrodt [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -