📄 rfc1575.txt
字号:
Network Working Group S. HaresRequest for Comments: 1575 Merit/NSFNETObsoletes: 1139 C. WittbrodtCategory: Standards Track Stanford University/BARRNet February 1994 An Echo Function for CLNP (ISO 8473)Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This memo defines an echo function for the connection-less network layer protocol. The mechanism that is mandated here is in the final process of being standardized by ISO as "Amendment X: Addition of an Echo function to ISO 8473" an integral part of Version 2 of ISO 8473.Table of Contents Section 1. Conventions ................................. 2 Section 2. Introduction ................................ 2 Section 3. The Generic Echo Function ................... 3 Section 3.1 The Echo-Request ........................... 3 Section 3.2 The Echo-Response .......................... 3 Section 4. The Implementation Mechanism ................ 4 Section 4.1 The Echo-Request ........................... 4 Section 4.2 The Echo-Response .......................... 4 Section 5. Implementation Notes ........................ 4 Section 5.1 Discarding Packets ......................... 4 Section 5.2 Error Report Flag .......................... 4 Section 5.3 Use of the Lifetime Field .................. 5 Section 5.4 Echo-request function ...................... 5 Section 5.5 Echo-response function ..................... 6 Section 5.6 Use of the Priority Option ................. 8 Section 5.7 Use of the Source Route Option ............. 8 Section 5.8 Transmission of Multiple Echo-Requests ..... 9 Section 6. Security Considerations ..................... 9 Section 7. Authors' Addresses .......................... 9 Section 8. References .................................. 9Hares & Wittbrodt [Page 1]RFC 1575 An Echo Function for CLNP (ISO 8473) February 19941. Conventions The following language conventions are used in the items of specification in this document: o MUST, SHALL, or MANDATORY -- the item is an absolute requirement of the specification. o SHOULD or RECOMMENDED -- the item should generally be followed for all but exceptional circumstances. o MAY or OPTIONAL -- the item is truly optional and may be followed or ignored according to the needs of the implementor.2. Introduction The OSI Connection-less network layer protocol (ISO 8473) defines a means for transmitting and relaying data and error protocol data units, (PDUs) or preferably, packets through an OSI internet. Unfortunately, the world that these packets travel through is imperfect. Gateways and links may fail. This memo defines an echo function to be used in the debugging and testing of the OSI network layer. Hosts and routers which support the OSI network layer MUST be able to originate an echo packet as well as respond when an echo is received. Network management protocols can be used to determine the state of a gateway or link. However, since these protocols themselves utilize a protocol that may experience packet loss, it cannot be guaranteed that the network management applications can be utilized. A simple mechanism in the network layer is required so that systems can be probed to determine if the lowest levels of the networking software are operating correctly. This mechanism is not intended to compete with or replace network management; rather it should be viewed as an addition to the facilities offered by network management. The code-path consideration requires that the echo path through a system be identical (or very close) to the path used by normal data. An echo path must succeed and fail in unison with the normal data path or else it will not provide a useful diagnostic tool. Previous drafts describing an echo function for CLNP offered two implementation alternatives (see RFC 1139). Although backward compatibility is an important consideration whenever a change is made to a protocol, it is more important at this point that the echo mechanisms used on the Internet interoperate. For this reason, this memo defines one implementation mechanism (consistent with one of the previous drafts).Hares & Wittbrodt [Page 2]RFC 1575 An Echo Function for CLNP (ISO 8473) February 19943. The Generic Echo Function The following section describes the echo function in a generic fashion. This memo defines an echo-request entity. The function of the echo-request entity is to accept an incoming echo-request packet, perform some processing, and generate an echo-response packet. The echo implementation may be thought of as an entity that coexists with the network layer. Subsequent sections will detail the implementation mechanism. For the purposes of this memo, the term "ping" shall be used to mean the act of transmitting an echo-request packet to a remote system (with the expectation that an echo-response packet will be sent back to the transmitter).3.1. The Echo-Request When a system decides to ping a remote system, an echo-request is built. All fields of the packet header are assigned normal values (see implementation specific sections for more information). The address of the system to be pinged is inserted as the destination NSAP address. The rules of segmentation defined for a data (DT) packet also apply to the echo-request packet. The echo-request is switched through the network toward its destination. (An echo packet must follow the same path as CLNP data packet with the same options in the CLNP header.) Upon reaching the destination system, the packet is processed according to normal processing rules. At the end of the input processing, the echo- request packet is delivered to the echo-request entity. The echo-request entity will build and dispatch the echo-response packet. This is a new packet. Except as noted below, this second packet is built using the normal construction procedures. The destination address of the echo-response packet is taken from the source address of the echo-request packet. Most options present in the echo-request packet are copied into the echo-response packet (see implementation notes for more information).3.2. The Echo-Response The entire echo-request packet is included in the data portion of the echo-response packet. This includes the echo-request packet header as well as any data that accompanies the echo-request packet. The entire echo-request packet is included in the echo-response so that fields such as the echo-request lifetime may be examined when the response is received. After the echo-response packet is built, it is transmitted toward the new destination (the original source of theHares & Wittbrodt [Page 3]RFC 1575 An Echo Function for CLNP (ISO 8473) February 1994 echo-request). The rules of segmentation defined for a data packet also apply to the echo-response packet. The echo-response packet is relayed through the network toward its destination. (A echo response packet must follow the same path as a CLNP data packet with the same options in the CLNP header.) Upon reaching its destination, it is processed by the packet input function and delivered to the entity that created the echo-request.4. The Implementation Mechanism The implementation mechanism defines two new 8473 packet types: ERQ (echo-request) and ERP (echo-response). With the exception of a new type code, these packets will be identical to the date packet in every respect.4.1. The Echo-Request The type code for the echo-request packet is decimal 30.4.2. The Echo-Response The type code for the echo-response packet is decimal 31.5. Implementation Notes The following notes are an integral part of memo. It is important that implementors take heed of these points.5.1. Discarding Packets The rules used for discarding a data packet (ISO 8473, Section 6.9 - Section 6.10) are applied when an echo-request or echo-response is discarded.5.2. Error Report Flag The error report flag may be set on the echo-request packet, the echo-response packet, or both. If an echo-request is discarded, the associated error-report (ER) packet will be sent to the echo-request source address on the originating machine. If an echo-response is discarded, the associated error-report packet will be sent to the echo-response source address. In general, this will be the destination address of the echo-request entity. It should be noted that the echo-request entity and the originator of the echo-request packet are not required to process error-report packets.Hares & Wittbrodt [Page 4]RFC 1575 An Echo Function for CLNP (ISO 8473) February 19945.3. Use of the Lifetime Field The lifetime field of the echo-request and echo-response packets should be set to the value normally used for a data packet. Note: although this memo does not prohibit the generation of a packet with a smaller-than-normal lifetime field, this memo explicitly does not attempt to define a mechanism for varying the lifetime field set in the echo-response packet. This memo recommends the lifetime value that would under normal circumstances by used when sending a data packet.5.4. Echo-request function This function is invoked by system management to obtain information about the dynamic state of the Network layer with respect to (a) the reachability of specific network-entities, and (b) the characteristics of the path or paths that can be created between network-entities through the operation of Network layer routing functions. When invoked, the echo-request function causes an echo- request (ERQ) packet to be created. The echo-request packet shall be constructed and processed by ISO 8473 network-entities in end systems and intermediate systems in exactly the same way as the data packet, with the following caveats:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -