📄 rfc1465.txt
字号:
highest RELAY-MTA-priority. If there is more than one RELAY-MTAEppenberger [Page 18]RFC 1465 Routing Coordination for X.400 Services May 1993 having the same priority, then select a RELAY-MTA of your choice. If your own RELAY-MTA appears in that list, then you are not allowed to send to a RELAY-MTA with lower or equal priority. 5) If there are no service-priorities set in the corresponding RELAY-MTA document indicating which service type to use, you are free to choose the service type for connecting to the RELAY-MTA. However, if there are specific priorities set then select the service type with the highest priority. 6) If the connection fails then try other service types in the sequence of descending priority. 7) If no connection works for the selected RELAY-MTA, then check in the list for the one with the same priority, if possible, or else select one with the next lower priority. If there is another RELAY-MTA with a RELAY-MTA-priority between 0..49, then select it and proceed at step 5. Without another RELAY-MTA to try the currently selected RELAY-MTA will be retried.6.1 How to use RELAY-MTA-priorities An example helps to explain the usage of RELAY-MTA-priorities. Internet/TCP/RFC1006 and Public-X.25/X.25/TP0 are mandatory service types in the community REMOTEmail. The MHS domain P=REMOTE; A=ARCOM; C=CH; operates MTA-B, only connected to public X.25. A second RELAY-MTA which is connected to both, Internet and public X.25 is needed to offer relay services. A connection using Internet is considered cheap in this example. Both service types are available at MTA-A. Since MTA-B is the only RELAY-MTA responsible for relaying messages to P=REMOTE; A=ARCOM; C=CH; to the final destination it must have the highest priority. Community: REMOTEmail Domain: * P=REMOTE; A=ARCOM; C=CH; RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-B; 20 RELAY-MTA: P=MTA-C; A=ARCOM; C=CH;MTAname=MTA-C; 80 __________________________ +-------+ X.25 +-------+ ( ) | MTA-A +-------------+ MTA-B +-( P=REMOTE; A=ARCOM; C=CH; ) +-------+ +-------+ (__________________________) \ / TCP/IP \ /X.25 +-------+ | MTA-C | +-------+Eppenberger [Page 19]RFC 1465 Routing Coordination for X.400 Services May 1993 If MTA-A needs to relay a message for P=REMOTE; A=ARCOM; C=CH; then the rules of chapter 6 are evaluated: 1. MTA-B and MTA-C are possible destinations 2. MTA-B and MTA-C are reachable from MTA-A 3. MTA-B is a primary RELAY-MTA (not relevant in this example) 4. MTA-B has the highest priority. 5. MTA-B doesn't have specific service type lines documented. MTA-A chooses public X.25, since it is the only possibility to connect to MTA-B. 6. No other service types are available if the connection fails. 7. MTA-C has a priority of 80, it is not a backup RELAY-MTA. MTA-A must spool the message and try to connect directly to MTA-B. The organisation running MTA-A could save money by sending messages for the MHS domain P=REMOTE; A=ARCOM; C=CH; via MTA-C. Since the connection between MTA-C and the destination MTA-B is also expensive, the organisation running MTA-C would have to pay for external relay traffic. Setting a lower priority for MTA-C forces the other RELAY- MTAs with public X.25 connectivity to take their share of the cost. Note that forcing other RELAY-MTAs to use a specific stack should be avoided wherever possible by offering RELAY-MTAs with equal priority for all mandatory network services. This can be an important financial issue for MHS communities spanning several organisations, it is not relevant in general for an MHS community within a single organisation.6.2 How to use RELAY-MTA-priorities for backup RELAY-MTAS Two RELAY-MTAs offer real backup connectivity for the MHS domain P=REMOTE; A=ARCOM; C=CH;. It is therefore possible to set RELAY-MTA priorities in the range of 0..49 for both RELAY-MTAs. MTA-B will be the preferred one since it has the higher priority. If the connection to MTA-B fails, a sending RELAY-MTA may immediately try to connect to MTA-C. Community: REMOTEmail Domain: * P=REMOTE; A=ARCOM; C=CH; RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-B; 10Eppenberger [Page 20]RFC 1465 Routing Coordination for X.400 Services May 1993 RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-C; 30 __________________________ +-------+ +-------+ ( ) | MTA-A +-------------+ MTA-B +-( P=REMOTE; A=ARCOM; C=CH; ) +-------+ +-------+ (__________________________) \ / \ +-------+ -----------+ MTA-C | +-------+6.3 Load Sharing It is possible to set equal priorities to do some sort of load sharing. However, most implementations are not able to do random selection of RELAY-MTAs with equal priorities but have a fixed configuration. If load sharing is really needed then it is suggested to split up the MHS domain into several MHS subtrees and document them separately with a set of RELAY-MTAs with different priorities. An example is provided for illustration of the first possibility with equal RELAY-MTA-priorities: Community: REMOTEmail Domain: * P=REMOTE; A=ARCOM; C=CH; RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-B; 10 RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-C; 10 _ __________________________ ) +-------+ ( ) )--+ MTA-B +--( P=REMOTE; A=ARCOM; C=CH; ) ) +-------+ (__________________________) ) / ) +-------+/ )--+ MTA-C | _) +-------+ And here is an example where the MHS domain C=CH;ADMD=ARCOM;PRMD=REMOTE;O=Big-Org is documented with its own DOMAIN document: Note that in this example both RELAY-MTAs serve as backup RELAY-MTAs. Community: REMOTEmail Domain: * P=REMOTE; A=ARCOM; C=CH; RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-B; 10 RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-C; 30 Community: REMOTEmail Domain: * O=Big-Org; P=REMOTE; A=ARCOM; C=CH;Eppenberger [Page 21]RFC 1465 Routing Coordination for X.400 Services May 1993 RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-C; 10 RELAY-MTA: P=REMOTE; A=ARCOM; C=CH;MTAname=MTA-B; 30 _ __________________________ ) +-------+ ( ) )--+ MTA-B +--( P=REMOTE; A=ARCOM; C=CH; ) ) +-------+ (__________________________) ) \/ ) /\ _____________________________________ ) +-------+ ( ) )--+ MTA-C |--( O=Big-Org; P=REMOTE; A=ARCOM; C=CH; ) _) +-------+ (_____________________________________)7. Open issues Currently there are about 35 RELAY-MTAs within the COSINE-MHS service. A rough guess is that a network with about 60 RELAY-MTAs is still manageable provided there are automated tools for MTA configuration. If there are more MTAs applying for RELAY-MTA status in an MHS community, then either an X.500 based solution should be ready or a core set of about 30 well operated super-RELAY-MTAs should form a backbone, documented within a specific MHS community. Since the RELAY-MTA document contains information about the supported X.400 version (84 or 88), it is possible for an X.400(88) system to select with higher priority an (88)RELAY-MTA. The rules in chapter 6 could be modified to select X.400(88) systems first if the sending RELAY-MTA is an (88) system itself. The issue of how to establish an X.400(88) RELAY-MTA infrastructure within an MHS community is for further study.Eppenberger [Page 22]RFC 1465 Routing Coordination for X.400 Services May 1993Appendix A: Document examples for the COSINE-MHS community Instead of creating artificial documents to show an example document set, this appendix contains extracts from a real operational X.400 service. The research and development community in Europe has used X.400 for several years. This proposal was initially written to address this community only and solve the urgent routing and coordination problems. Contributions from different experts have made it more flexible and therefore hopefully useful for other MHS communities.Appendix A1: The COMMUNITY document Community: COSINE-MHS # The COSINE-MHS service is a MHS community formed by the European # academic and research networks with additional contacts in all # other continents. # # The coordination is done by the COSINE-MHS project team. # Update: FORMAT=V3; DATE=921218; START=930201 # Address: S=Project-Team; O=SWITCH; P=SWITCH; A=ARCOM; C=CH; # Phone: +41 1-262-31-43 Fax: +41 1-261-81-88 # Mail: SWITCH Head Office / MHS Coordination Service / Limmatquai 138 / CH-8001 Zurich / Switzerland # Reachable: 09:00-12:00; 14:00-17:30; UTC+1 # Mail-server: S=mhs-server; O=switch; OU1=nic; P=SWITCH; A=ARCOM; C=CH; FTP-server: nic.switch.ch; cosine; user@domain # Macro: Int-X25(80) TELEX+00728722+X.25(80)+01+ Macro: Internet-RFC-1006 TELEX+00728722+RFC-1006+03+ Macro: IXI TELEX+00728722+X.25(80)+06+ # Mandatory-Service: Public-X.25/X.25/TP0 # The public X.25 network. X.25 is supported in most X.400 # applications and mandatory in X.400 anyhow. # Mandatory-Service: Internet/TCP/RFC1006Eppenberger [Page 23]RFC 1465 Routing Coordination for X.400 Services May 1993 # The Internet, standing for the global TCP/IP network of the # research and development community # RFC1006 is considered a solution to ease migration to OSI. It will # be replaced by TP4/CLNS as soon as a reliable service is # available. # Optional-Service: Int-CLNS/CLNS/TP4 # The RARE Connectionless pilot service. Current participants are # NORDUnet, SURFnet, CERN, NSFnet and SWITCH. # Optional-Service: EMPB-X.25/X.25/TP0 # The International X.25 Infrastructure covering most countries in # Europe. The absence of volume tariffs make it a preferred choice.Appendix A2: Example of a RELAY-MTA document Community: COSINE-MHS # Update: FORMAT=V3; DATE=921218; START=930201 # RELAY-MTA: P=SWITCH; A=ARCOM; C=CH; MTAname=chx400.switch.ch # Status: primary # Password: none RTS-dialog-mode: MONOLOGUE # Called-address: Public-X.25/X.25/TP0; "591"/Int-X25(80)=22847971014520+CUDF+03010100; MTS-TP-84 Calling-address: Public-X.25/X.25/TP0; Int-X25(80)=22847971014520; # Called-address: Internet/TCP/RFC1006; "591"/Internet-RFC-1006=chx400.switch.ch; MTS-TP-84 Calling-address: Internet/TCP/RFC1006; Internet-RFC-1006=chx400.switch.ch # Called-address: EMPB-X.25/X.25/TP0; "591"/IXI=20432840100520+CUDF+03010100; MTS-TP-84 Calling-address: EMPB-X.25/X.25/TP0; IXI=20432840100520; # Calling-address: Int-CLNS/CLNS/TP4;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -