📄 rfc2072.txt
字号:
Locally-Administered Addresses (LAA) on end hosts, rather than globally unique addresses stored in read-only memory (ROM). Using LAAs solves the problem of MAC addresses changing when a network interface card changes, but LAAs have their own management problems of configuration into end systems and maintaining uniqueness within the enterprise.5.5.2 Router Roles in Dialup Address Assignment There are several possible ways in which an dialup end host interacts with address assignment. Routers/access servers can play critical roles in this process, either to provide connectivity between client and server, or directly to assign addresses. Different vendors handle address assignment in different ways. Methods include: 1. The access server forwards the request to a DHCP server, using a unique 48-bit identifier associated with the client. Note that this usually should not be the MAC address of the access server, since the same MAC address would then be associated with different hosts. 2. The server forwards the request to an authentication server, which in turn gets a dynamic address either from: a. internal pools b. a DHCP server to which it forwards 3. The server selects an address from locally configured pools and provides it to the dialing host without the intervention of other services.Berkowitz Informational [Page 17]RFC 2072 Router Renumbering Guide January 1997 When the router contains assignable addresses, these may need to change as part of renumbering. Alternatively, hard-coded references to address assignment or authentication servers may need to change.5.5.3 Router Autoonfiguration This initial address assignment may provide an address only for a single connection (i.e., between the new and configuring routers). The newly assigned address may then be used to "bootstrap" a full configuration into the new router. Dynamic address assignment to routers is probably most common at outlying "stub" or "edge" routers that connect via WAN links to a central location with a configuration server. Such edge devices may be shipped to a remote site, plugged in to a WAN line, and use proprietary methods to acquire part or all of their address configuration. When such autoconfiguration is used on edge routers, it may be necessary to force a restart of the edge router after renumbering. Restarting may be the only way to force the autoconfigured router to learn its new address. Other out-of-band methods may be available to change the edge router addresses.5.6 Network Address Translation Network address translation (NAT) is a valuable technique for renumbering, or even for avoiding the need to renumber significant parts of an enterprise [RFC1631]. It is not always transparent to network layer protocols, upper layer protocols, and network management tools, and must not be regarded as a panacea. In the classic definition of NAT, certain parts of the routing system are designated as stub domains, and connect to the global domain only through NAT functions. The NAT contains a translation mechanism that maps a stub address to a global address. This mechanism may map statically or dynamically. A more general NAT mechanism often is implemented in firewall bastion hosts, which isolate "inside" and "outside" addresses through transport- or application-level authenticated gateways. Mappings from a "local" or "inside" address to a global address often is not one-to-one, because an inside address is dynamically mapped to a TCP or UDP port on an outside interface address. In general, if there are multiple NATs, their translation mechanisms should be synchronized. There are specialized cases when a given stub address appears in more than one stub domain, and ambiguityBerkowitz Informational [Page 18]RFC 2072 Router Renumbering Guide January 1997 develops if one wishes to map, say, from 10.1.0.1/16 in stub domain A to 10.1.0.1/16 in stub domain B. In this case, both 10.1.0.1 addresses identify different hosts. Special mechanisms would have to exist to map the domain A local address into one global address, and to map the domain B local address into a different global address. NAT can have a valuable role in renumbering. Its intelligent use can greatly minimize the amount of renumbering that needs to be done. NAT, however, is not completely transparent. Specifically, it can interfere with the proper operation of any protocol that carries an IP address as data, since NAT does not understand passenger fields and is unaware numbers need to change. Examples of protocols affected are: --TCP and UDP checksums that are in part based on the IP header. This includes end-to-end encryption schemes that include the TCP/UDP checksum --ICMP messages containing IP addresses --DNS queries that return addresses or send addresses --FTP interactions that use an ASCII-encoded IP address as part of the PORT command It may be possible to avoid conflict if only certain hosts use affected protocols. Such hosts could be assigned only global addresses, if the network topology and routing plan permit. Early NAT experiments suggested that it needs a sparse end-to-end traffic mapping database for reasonable performance. This may or may not be an issue in more hardware-based NAT implementations. Another concern with NAT is that unique host addresses are hidden outside the local stub domains. This may in fact be desirable for security, but may present network management problems. One possibility would be to develop a NAT MIB that could be queried by SNMP to find the specific local-to-global mappings in effect. There are also issues for DNS, DHCP, and other address management services. There presumably would need to be local servers within stub domains, so address requests would be resolved uniquely in each stub (or would return appropriate global addresses).Berkowitz Informational [Page 19]RFC 2072 Router Renumbering Guide January 19976. Potential Pitfalls in Router Renumbering One way to categorize potential pitfalls is to look at those associated with the overall numbering plan itself and routing advertisement, and those associated with protocol behavior. In general, the former case is static and the latter is dynamic.6.1 Static Problems can be implicit to the address/routing structure itself. These can include failures of components to understand arbitrary prefix addressing (i.e., classless routing), reachability due to inappropriate default or aggregated routes, etc.6.1.1 Classless Routing Considerations Among the major reasons to renumber is to gain globally routable address space. In the global Internet, routable address space is based on arbitrary-length prefixes rather than traditional address classes. Classless Inter-Domain Routing (CIDR) is the administrative realization of prefix addressing in the global Internet. Inside enterprises, arbitrary prefix length addressing often is called Variable Length Subnet Masking (VLSM) or "subnetting a subnet." The general rules of prefix addressing must be followed in CIDR. Among these are permitting use of the all-zeroes and all-one subnets [RFC1812], and not assuming that a route to a "Class A/B/C network number" implies routes to all subnets of that network. Assumptions also should not be made that a prefix length is implied by the structure of the high-order bits of the IP address (i.e., the "First Octet Rule"). This ideal, unfortunately, is not understood by a significant number of routers (and terminal access servers that participate in routing), and an even more significant number of host IP implementations. When planning renumbering, network designers must know if the new address has been allocated using CIDR rules rather than traditional classful addressing. If CIDR rules have been followed in address assignment, then steps need to be taken to assure the router understands them, or appropriate steps need to be taken to interface the existing environment to the CIDR environment. Current experience suggests that it is best, when renumbering, to maintain future compatibility by moving to a CIDR-supportive routing environment. While this is usually thought to mean introducing a classless dynamic routing protocol, this need not mean that routing become much more complex. In a RIPv1 environment, moving to RIPv2Berkowitz Informational [Page 20]RFC 2072 Router Renumbering Guide January 1997 may be a relatively simple change. Alternative simple methods include establishing a default route from a non-CIDR-compliant routing domain to a CIDR-compliant service provider, or making use of static routes that are CIDR-compliant. Some routers support classless routing without further configuration, other routers support classless routing but require specific configuration steps to enable it, while other routers only understand classful routing. In general, most renumbering will eventually require classless routing support. It is essential to know if a given router can support classless routing. If it does not, workarounds may be possible. Workarounds are likely to be necessary.6.1.1.1 Aggregation Problems In experimenting with the CIDR use of a former Class A network number, it was shown in RFC1879 that CIDR compliance rules must be enabled explicitly in some routers, while other routers do not understand CIDR rules. RFC 1897 demonstrated problems with some existing equipment, especially "equipment that depends on use of a classful routing protocol, such as RIPv1 are prone to misconfiguration. Tested examples are current Ascend and Livingston gear, which continue to use RIPv1 as the default/only routing protocol. RIPv1 use will create an aggregate announcement.... The Ascend was told to announce 39.1.28/24, but since RIPv1 can't do this, the Ascend instead sent 39/8." RIPv1, like all classful interior protocols, is obsolescent.6.1.1.2 Discontiguous Networks Another problem that can occur with routers or routing mechanisms that do not understand arbitrary length prefix addressing is that of discontiguous networks. This problem is easy to create inadvertently when renumbering. In the example below, assume the enterprise has been using 10.0.0.0/8 as its primary prefix, but has introduced an ISP whose registered addresses were in 172.31.0.0/16.Berkowitz Informational [Page 21]RFC 2072 Router Renumbering Guide January 1997 Assume a RIPv1 system of three routers: 10.1.0.1/16 10.2.0.1/16 | | | | +-------------------------------------+ | Router 1 | +-------------------------------------+ | 172.31.1.1/24 | | | 172.31.1.2/24 +-------------------------------------+ | Router 2 |<------OUTSIDE +-------------------------------------+ | 172.31.2.1/24 | | | 172.31.2.2/24 +-------------------------------------+ | Router 3 | +-------------------------------------+ | | | | 10.3.0.1/16 10.4.0.1/16 Router 1 can reach its two locally connected subnets, 10.1.0.0/16 and 10.2.0.0/16. It will aggregate them into a single announcement of 10.0.0.0/8 when it advertises out the 172.31.1.1 interface. In like manner, Router 3 can reach its two locally connected subnets, 0.3.0.0/16 and 10.4.0.0/16. It will aggregate them into a single announcement of 10.0.0.0/8 when it advertises out the 172.31.2.2 interface. When Router 2 receives a packet from its "outside" interface destined, say, to 10.1.1.56/16, where does it send it? Router 2 has received two advertisements of 10.0.0.0 on different interfaces, without any detail of subnets inside 10.0.0.0. Router 2 has an ambiguous routing table in terms of the next hop to a subnet of 10.0.0.0. We call this problem, when parts of the same classful network are separated by different networks, discontigous subnets.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -