📄 rfc2401.txt
字号:
to traffic that is allowed to pass without additional IPsec protection. The third choice refers to traffic that is afforded IPsec protection, and for such traffic the SPD must specify the security services to be provided, protocols to be employed, algorithms to be used, etc. For every IPsec implementation, there MUST be an administrative interface that allows a user or system administrator to manage the SPD. Specifically, every inbound or outbound packet is subject to processing by IPsec and the SPD must specify what action will be taken in each case. Thus the administrative interface must allow the user (or system administrator) to specify the security processing to be applied to any packet entering or exiting the system, on a packet by packet basis. (In a host IPsec implementation making use of a socket interface, the SPD may not need to be consulted on a per packet basis, but the effect is still the same.) The management interface for the SPD MUST allow creation of entries consistent with the selectors defined in Section 4.4.2, and MUST support (total) ordering of these entries. It is expected that through the use of wildcards in various selector fields, and because all packets on aKent & Atkinson Standards Track [Page 14]RFC 2401 Security Architecture for IP November 1998 single UDP or TCP connection will tend to match a single SPD entry, this requirement will not impose an unreasonably detailed level of SPD specification. The selectors are analogous to what are found in a stateless firewall or filtering router and which are currently manageable this way. In host systems, applications MAY be allowed to select what security processing is to be applied to the traffic they generate and consume. (Means of signalling such requests to the IPsec implementation are outside the scope of this standard.) However, the system administrator MUST be able to specify whether or not a user or application can override (default) system policies. Note that application specified policies may satisfy system requirements, so that the system may not need to do additional IPsec processing beyond that needed to meet an application's requirements. The form of the management interface is not specified by this document and may differ for hosts vs. security gateways, and within hosts the interface may differ for socket-based vs. BITS implementations. However, this document does specify a standard set of SPD elements that all IPsec implementations MUST support. The SPD contains an ordered list of policy entries. Each policy entry is keyed by one or more selectors that define the set of IP traffic encompassed by this policy entry. (The required selector types are defined in Section 4.4.2.) These define the granularity of policies or SAs. Each entry includes an indication of whether traffic matching this policy will be bypassed, discarded, or subject to IPsec processing. If IPsec processing is to be applied, the entry includes an SA (or SA bundle) specification, listing the IPsec protocols, modes, and algorithms to be employed, including any nesting requirements. For example, an entry may call for all matching traffic to be protected by ESP in transport mode using 3DES-CBC with an explicit IV, nested inside of AH in tunnel mode using HMAC/SHA-1. For each selector, the policy entry specifies how to derive the corresponding values for a new Security Association Database (SAD, see Section 4.4.3) entry from those in the SPD and the packet (Note that at present, ranges are only supported for IP addresses; but wildcarding can be expressed for all selectors): a. use the value in the packet itself -- This will limit use of the SA to those packets which have this packet's value for the selector even if the selector for the policy entry has a range of allowed values or a wildcard for this selector. b. use the value associated with the policy entry -- If this were to be just a single value, then there would be no difference between (b) and (a). However, if the allowed values for the selector are a range (for IP addresses) orKent & Atkinson Standards Track [Page 15]RFC 2401 Security Architecture for IP November 1998 wildcard, then in the case of a range,(b) would enable use of the SA by any packet with a selector value within the range not just by packets with the selector value of the packet that triggered the creation of the SA. In the case of a wildcard, (b) would allow use of the SA by packets with any value for this selector. For example, suppose there is an SPD entry where the allowed value for source address is any of a range of hosts (192.168.2.1 to 192.168.2.10). And suppose that a packet is to be sent that has a source address of 192.168.2.3. The value to be used for the SA could be any of the sample values below depending on what the policy entry for this selector says is the source of the selector value: source for the example of value to be new SAD used in the SA selector value --------------- ------------ a. packet 192.168.2.3 (one host) b. SPD entry 192.168.2.1 to 192.168.2.10 (range of hosts) Note that if the SPD entry had an allowed value of wildcard for the source address, then the SAD selector value could be wildcard (any host). Case (a) can be used to prohibit sharing, even among packets that match the same SPD entry. As described below in Section 4.4.3, selectors may include "wildcard" entries and hence the selectors for two entries may overlap. (This is analogous to the overlap that arises with ACLs or filter entries in routers or packet filtering firewalls.) Thus, to ensure consistent, predictable processing, SPD entries MUST be ordered and the SPD MUST always be searched in the same order, so that the first matching entry is consistently selected. (This requirement is necessary as the effect of processing traffic against SPD entries must be deterministic, but there is no way to canonicalize SPD entries given the use of wildcards for some selectors.) More detail on matching of packets against SPD entries is provided in Section 5. Note that if ESP is specified, either (but not both) authentication or encryption can be omitted. So it MUST be possible to configure the SPD value for the authentication or encryption algorithms to be "NULL". However, at least one of these services MUST be selected, i.e., it MUST NOT be possible to configure both of them as "NULL". The SPD can be used to map traffic to specific SAs or SA bundles. Thus it can function both as the reference database for security policy and as the map to existing SAs (or SA bundles). (To accommodate the bypass and discard policies cited above, the SPD alsoKent & Atkinson Standards Track [Page 16]RFC 2401 Security Architecture for IP November 1998 MUST provide a means of mapping traffic to these functions, even though they are not, per se, IPsec processing.) The way in which the SPD operates is different for inbound vs. outbound traffic and it also may differ for host vs. security gateway, BITS, and BITW implementations. Sections 5.1 and 5.2 describe the use of the SPD for outbound and inbound processing, respectively. Because a security policy may require that more than one SA be applied to a specified set of traffic, in a specific order, the policy entry in the SPD must preserve these ordering requirements, when present. Thus, it must be possible for an IPsec implementation to determine that an outbound or inbound packet must be processed thorough a sequence of SAs. Conceptually, for outbound processing, one might imagine links (to the SAD) from an SPD entry for which there are active SAs, and each entry would consist of either a single SA or an ordered list of SAs that comprise an SA bundle. When a packet is matched against an SPD entry and there is an existing SA or SA bundle that can be used to carry the traffic, the processing of the packet is controlled by the SA or SA bundle entry on the list. For an inbound IPsec packet for which multiple IPsec SAs are to be applied, the lookup based on destination address, IPsec protocol, and SPI should identify a single SA. The SPD is used to control the flow of ALL traffic through an IPsec system, including security and key management traffic (e.g., ISAKMP) from/to entities behind a security gateway. This means that ISAKMP traffic must be explicitly accounted for in the SPD, else it will be discarded. Note that a security gateway could prohibit traversal of encrypted packets in various ways, e.g., having a DISCARD entry in the SPD for ESP packets or providing proxy key exchange. In the latter case, the traffic would be internally routed to the key management module in the security gateway.4.4.2 Selectors An SA (or SA bundle) may be fine-grained or coarse-grained, depending on the selectors used to define the set of traffic for the SA. For example, all traffic between two hosts may be carried via a single SA, and afforded a uniform set of security services. Alternatively, traffic between a pair of hosts might be spread over multiple SAs, depending on the applications being used (as defined by the Next Protocol and Port fields), with different security services offered by different SAs. Similarly, all traffic between a pair of security gateways could be carried on a single SA, or one SA could be assigned for each communicating host pair. The following selector parameters MUST be supported for SA management to facilitate control of SA granularity. Note that in the case of receipt of a packet with an ESP header, e.g., at an encapsulating security gateway or BITWKent & Atkinson Standards Track [Page 17]RFC 2401 Security Architecture for IP November 1998 implementation, the transport layer protocol, source/destination ports, and Name (if present) may be "OPAQUE", i.e., inaccessible because of encryption or fragmentation. Note also that both Source and Destination addresses should either be IPv4 or IPv6. - Destination IP Address (IPv4 or IPv6): this may be a single IP address (unicast, anycast, broadcast (IPv4 only), or multicast group), a range of addresses (high and low values (inclusive), address + mask, or a wildcard address. The last three are used to support more than one destination system sharing the same SA (e.g., behind a security gateway). Note that this selector is conceptually different from the "Destination IP Address" field in the <Destination IP Address, IPsec Protocol, SPI> tuple used to uniquely identify an SA. When a tunneled packet arrives at the tunnel endpoint, its SPI/Destination address/Protocol are used to look up the SA for this packet in the SAD. This destination address comes from the encapsulating IP header. Once the packet has been processed according to the tunnel SA and has come out of the tunnel, its selectors are "looked up" in the Inbound SPD. The Inbound SPD has a selector called destination address. This IP destination address is the one in the inner (encapsulated) IP header. In the case of a transport'd packet, there will be only one IP header and this ambiguity does not exist. [REQUIRED for all implementations] - Source IP Address(es) (IPv4 or IPv6): this may be a single IP address (unicast, anycast, broadcast (IPv4 only), or multicast group), range of addresses (high and low values inclusive), address + mask, or a wildcard address. The last three are used to support more than one source system sharing the same SA (e.g., behind a security gateway or in a multihomed host). [REQUIRED for all implementations] - Name: There are 2 cases (Note that these name forms are supported in the IPsec DOI.) 1. User ID a. a fully qualified user name string (DNS), e.g., mozart@foo.bar.com b. X.500 distinguished name, e.g., C = US, SP = MA, O = GTE Internetworking, CN = Stephen T. Kent. 2. System name (host, security gateway, etc.) a. a fully qualified DNS name, e.g., foo.bar.com b. X.500 distinguished name c. X.500 general name NOTE: One of the possible values of this selector is "OPAQUE".Kent & Atkinson Standards Track [Page 18]RFC 2401 Security Architecture for IP November 1998 [REQUIRED for the following cases. Note that support for name forms other than addresses is not required for manually keyed
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -