📄 sgml.htm
字号:
0x212B Å ISOtech # ANGSTROM SIGN0x212C ℬ ISOtech # SCRIPT CAPITAL B0x2133 ℳ ISOtech # SCRIPT CAPITAL M0x2134 ℴ ISOtech # SCRIPT SMALL O0x2135 ℵ HTMLsymbol # ALEF SYMBOL0x2135 ℵ ISOtech # ALEF SYMBOL0x2136 ℶ ISOamso # BET SYMBOL0x2137 ℷ ISOamso # GIMEL SYMBOL0x2138 ℸ ISOamso # DALET SYMBOL0x2153 ⅓ ISOpub # VULGAR FRACTION ONE THIRD0x2154 ⅔ ISOpub # VULGAR FRACTION TWO THIRDS0x2155 ⅕ ISOpub # VULGAR FRACTION ONE FIFTH0x2156 ⅖ ISOpub # VULGAR FRACTION TWO FIFTHS0x2157 ⅗ ISOpub # VULGAR FRACTION THREE FIFTHS0x2158 ⅘ ISOpub # VULGAR FRACTION FOUR FIFTHS0x2159 ⅙ ISOpub # VULGAR FRACTION ONE SIXTH0x215A ⅚ ISOpub # VULGAR FRACTION FIVE SIXTHS0x215B ⅛ ISOnum # VULGAR FRACTION ONE EIGHTH0x215C ⅜ ISOnum # VULGAR FRACTION THREE EIGHTHS0x215D ⅝ ISOnum # VULGAR FRACTION FIVE EIGHTHS0x215E ⅞ ISOnum # VULGAR FRACTION SEVEN EIGHTHS0x2190 ← ISOnum # LEFTWARDS ARROW0x2191 ↑ ISOnum # UPWARDS ARROW0x2192 → ISOnum # RIGHTWARDS ARROW0x2193 ↓ ISOnum # DOWNWARDS ARROW0x2194 ↔ ISOamsa # LEFT RIGHT ARROW0x2194 ⟺ ISOamsa # LEFT RIGHT ARROW0x2194 ⟷ ISOamsa # LEFT RIGHT ARROW0x2195 ↕ ISOamsa # UP DOWN ARROW0x2196 ↖ ISOamsa # NORTH WEST ARROW0x2197 ↗ ISOamsa # NORTH EAST ARROW0x2198 &drarr; ISOamsa # SOUTH EAST ARROW0x2199 &dlarr; ISOamsa # SOUTH WEST ARROW0x219A ↚ ISOamsa # LEFTWARDS ARROW WITH STROKE0x219B ↛ ISOamsa # RIGHTWARDS ARROW WITH STROKE0x219D ↝ ISOamsa # RIGHTWARDS WAVE ARROW0x219E ↞ ISOamsa # LEFTWARDS TWO HEADED ARROW0x21A0 ↠ ISOamsa # RIGHTWARDS TWO HEADED ARROW0x21A2 ↢ ISOamsa # LEFTWARDS ARROW WITH TAIL0x21A3 ↣ ISOamsa # RIGHTWARDS ARROW WITH TAIL0x21A6 ↦ ISOamsa # RIGHTWARDS ARROW FROM BAR0x21A9 ↩ ISOamsa # LEFTWARDS ARROW WITH HOOK0x21AA ↪ ISOamsa # RIGHTWARDS ARROW WITH HOOK0x21AB ↫ ISOamsa # LEFTWARDS ARROW WITH LOOP0x21AC ↬ ISOamsa # RIGHTWARDS ARROW WITH LOOP0x21AD ↭ ISOamsa # LEFT RIGHT WAVE ARROW0x21AE ↮ ISOamsa # LEFT RIGHT ARROW WITH STROKE0x21B0 ↰ ISOamsa # UPWARDS ARROW WITH TIP LEFTWARDS0x21B1 ↱ ISOamsa # UPWARDS ARROW WITH TIP RIGHTWARDS0x21B5 ↵ HTMLsymbol # DOWNWARDS ARROW WITH CORNER LEFTWARDS0x21B6 ↶ ISOamsa # ANTICLOCKWISE TOP SEMICIRCLE ARROW0x21B7 ↷ ISOamsa # CLOCKWISE TOP SEMICIRCLE ARROW0x21BA ↺ ISOamsa # ANTICLOCKWISE OPEN CIRCLE ARROW0x21BB ↻ ISOamsa # CLOCKWISE OPEN CIRCLE ARROW0x21BC ↼ ISOamsa # LEFTWARDS HARPOON WITH BARB UPWARDS0x21BD ↽ ISOamsa # LEFTWARDS HARPOON WITH BARB DOWNWARDS0x21BE ↾ ISOamsa # UPWARDS HARPOON WITH BARB RIGHTWARDS0x21BF ↿ ISOamsa # UPWARDS HARPOON WITH BARB LEFTWARDS0x21C0 ⇀ ISOamsa # RIGHTWARDS HARPOON WITH BARB UPWARDS0x21C1 ⇁ ISOamsa # RIGHTWARDS HARPOON WITH BARB DOWNWARDS0x21C2 ⇂ ISOamsa # DOWNWARDS HARPOON WITH BARB RIGHTWARDS0x21C3 ⇃ ISOamsa # DOWNWARDS HARPOON WITH BARB LEFTWARDS0x21C4 &rlarr2; ISOamsa # RIGHTWARDS ARROW OVER LEFTWARDS ARROW0x21C6 &lrarr2; ISOamsa # LEFTWARDS ARROW OVER RIGHTWARDS ARROW0x21C7 &larr2; ISOamsa # LEFTWARDS PAIRED ARROWS0x21C8 &uarr2; ISOamsa # UPWARDS PAIRED ARROWS0x21C9 &rarr2; ISOamsa # RIGHTWARDS PAIRED ARROWS0x21CA &darr2; ISOamsa # DOWNWARDS PAIRED ARROWS0x21CB &lrhar2; ISOamsa # LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON0x21CC &rlhar2; ISOamsa # RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON0x21CD ⇍ ISOamsa # LEFTWARDS DOUBLE ARROW WITH STROKE0x21CE ⇎ ISOamsa # LEFT RIGHT DOUBLE ARROW WITH STROKE0x21CF ⇏ ISOamsa # RIGHTWARDS DOUBLE ARROW WITH STROKE0x21D0 ⇐ ISOtech # LEFTWARDS DOUBLE ARROW0x21D0 ⟸ ISOamsa # LEFTWARDS DOUBLE ARROW0x21D1 ⇑ ISOamsa # UPWARDS DOUBLE ARROW0x21D2 ⇒ ISOtech # RIGHTWARDS DOUBLE ARROW0x21D2 ⟹ ISOamsa # RIGHTWARDS DOUBLE ARROW0x21D3 ⇓ ISOamsa # DOWNWARDS DOUBLE ARROW0x21D4 ⇔ ISOamsa # LEFT RIGHT DOUBLE ARROW0x21D4 ⇔ ISOtech # LEFT RIGHT DOUBLE ARROW0x21D5 ⇕ ISOamsa # UP DOWN DOUBLE ARROW0x21DA ⇚ ISOamsa # LEFTWARDS TRIPLE ARROW0x21DB ⇛ ISOamsa # RIGHTWARDS TRIPLE ARROW0x2200 ∀ ISOtech # FOR ALL0x2201 ∁ ISOamso # COMPLEMENT0x2202 ∂ ISOtech # PARTIAL DIFFERENTIAL0x2203 ∃ ISOtech # THERE EXISTS0x2204 ∄ ISOamso # THERE DOES NOT EXIST0x2205 ∅ ISOamso # EMPTY SET0x2207 ∇ ISOtech # NABLA0x2208 ∈ ISOtech # ELEMENT OF0x2209 ∉ ISOtech # NOT AN ELEMENT OF0x220A &epsis; ISOgrk3 # SMALL ELEMENT OF0x220B ∋ ISOtech # CONTAINS AS MEMBER0x220D ϶ ISOamsr # SMALL CONTAINS AS MEMBER0x220F ∏ ISOamsb # N-ARY PRODUCT0x2210 ⨿ ISOamsb # N-ARY COPRODUCT0x2210 ∐ ISOamsb # N-ARY COPRODUCT0x2210 &samalg; ISOamsr # N-ARY COPRODUCT0x2211 ∑ ISOamsb # N-ARY SUMMATION0x2212 − ISOtech # MINUS SIGN0x2213 ∓ ISOtech # MINUS-OR-PLUS SIGN0x2214 ∔ ISOamsb # DOT PLUS0x2216 ∖ ISOamsb # SET MINUS0x2216 ∖ ISOamsb # SET MINUS0x2217 ∗ ISOtech # ASTERISK OPERATOR0x2218 ∘ ISOtech # RING OPERATOR0x221A √ ISOtech # SQUARE ROOT0x221D ∝ ISOtech # PROPORTIONAL TO0x221D ∝ ISOamsr # PROPORTIONAL TO0x221E ∞ ISOtech # INFINITY0x221F &ang90; ISOtech # RIGHT ANGLE0x2220 ∠ ISOamso # ANGLE0x2221 ∡ ISOamso # MEASURED ANGLE0x2222 ∢ ISOtech # SPHERICAL ANGLE0x2223 ∣ ISOamsr # DIVIDES0x2224 ∤ ISOamsn # DOES NOT DIVIDE0x2225 ∥ ISOtech # PARALLEL TO0x2225 ∥ ISOamsr # PARALLEL TO0x2226 ∦ ISOamsn # NOT PARALLEL TO0x2226 ∦ ISOamsn # NOT PARALLEL TO0x2227 ∧ ISOtech # LOGICAL AND0x2228 ∨ ISOtech # LOGICAL OR0x2229 ∩ ISOtech # INTERSECTION0x222A ∪ ISOtech # UNION0x222B ∫ ISOtech # INTEGRAL0x222E ∮ ISOtech # CONTOUR INTEGRAL0x2234 ∴ ISOtech # THEREFORE0x2235 ∵ ISOtech # BECAUSE0x223C ∼ ISOtech # TILDE OPERATOR0x223C ∼ ISOamsr # TILDE OPERATOR0x223D ∽ ISOamsr # REVERSED TILDE0x2240 ≀ ISOamsb # WREATH PRODUCT0x2241 ≁ ISOamsn # NOT TILDE0x2243 ≃ ISOtech # ASYMPTOTICALLY EQUAL TO0x2244 ≄ ISOamsn # NOT ASYMPTOTICALLY EQUAL TO0x2245 ≅ ISOtech # APPROXIMATELY EQUAL TO0x2247 ≇ ISOamsn # NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO0x2248 ≈ ISOtech # ALMOST EQUAL TO0x2248 ≈ ISOamsr # ALMOST EQUAL TO0x2248 ≈ ISOamsr # ALMOST EQUAL TO0x2249 ≉ ISOamsn # NOT ALMOST EQUAL TO0x224A ≊ ISOamsr # ALMOST EQUAL OR EQUAL TO0x224C ≌ ISOamsr # ALL EQUAL TO0x224E ≎ ISOamsr # GEOMETRICALLY EQUIVALENT TO0x224F ≏ ISOamsr # DIFFERENCE BETWEEN0x2250 ≐ ISOamsr # APPROACHES THE LIMIT0x2251 ≑ ISOamsr # GEOMETRICALLY EQUAL TO0x2252 ≒ ISOamsr # APPROXIMATELY EQUAL TO OR THE IMAGE OF0x2253 ≓ ISOamsr # IMAGE OF OR APPROXIMATELY EQUAL TO0x2254 ≔ ISOamsr # COLON EQUALS0x2255 ≕ ISOamsr # EQUALS COLON0x2256 ≖ ISOamsr # RING IN EQUAL TO0x2257 ≗ ISOamsr # RING EQUAL TO0x2259 ≙ ISOtech # ESTIMATES0x225C ≜ ISOamsr # DELTA EQUAL TO0x2260 ≠ ISOtech # NOT EQUAL TO0x2261 ≡ ISOtech # IDENTICAL TO0x2262 ≢ ISOamsn # NOT IDENTICAL TO0x2264 ≤ ISOtech # LESS-THAN OR EQUAL TO0x2264 ⩽ ISOamsr # LESS-THAN OR EQUAL TO0x2265 ≥ ISOtech # GREATER-THAN OR EQUAL TO0x2265 ⩾ ISOamsr # GREATER-THAN OR EQUAL TO0x2266 ≦ ISOamsr # LESS-THAN OVER EQUAL TO0x2267 ≧ ISOamsr # GREATER-THAN OVER EQUAL TO0x2268 ≨ ISOamsn # LESS-THAN BUT NOT EQUAL TO0x2268 ⪇ ISOamsn # LESS-THAN BUT NOT EQUAL TO0x2268 ≨︀ ISOamsn # LESS-THAN BUT NOT EQUAL TO0x2269 ≩ ISOamsn # GREATER-THAN BUT NOT EQUAL TO0x2269 ⪈ ISOamsn # GREATER-THAN BUT NOT EQUAL TO0x2269 ≩︀ ISOamsn # GREATER-THAN BUT NOT EQUAL TO0x226A ≪ ISOamsr # MUCH LESS-THAN0x226B ≫ ISOamsr # MUCH GREATER-THAN0x226C ≬ ISOamsr # BETWEEN0x226E ≮ ISOamsn # NOT LESS-THAN0x226F ≯ ISOamsn # NOT GREATER-THAN0x2270 ≰ ISOamsn # NEITHER LESS-THAN NOR EQUAL TO0x2270 ⩽̸ ISOamsn # NEITHER LESS-THAN NOR EQUAL TO0x2271 ≱ ISOamsn # NEITHER GREATER-THAN NOR EQUAL TO0x2271 ⩾̸ ISOamsn # NEITHER GREATER-THAN NOR EQUAL TO0x2272 ≲ ISOamsr # LESS-THAN OR EQUIVALENT TO0x2273 ≳ ISOamsr # GREATER-THAN OR EQUIVALENT TO0x2276 ≶ ISOamsr # LESS-THAN OR GREATER-THAN0x2277 ≷ ISOamsr # GREATER-THAN OR LESS-THAN0x227A ≺ ISOamsr # PRECEDES0x227B ≻ ISOamsr # SUCCEEDS0x227C &cupre; ISOamsr # PRECEDES OR EQUAL TO0x227C ⪯ ISOamsr # PRECEDES OR EQUAL TO0x227D ≽ ISOamsr # SUCCEEDS OR EQUAL TO0x227D ⪰ ISOamsr # SUCCEEDS OR EQUAL TO0x227E ≾ ISOamsr # PRECEDES OR EQUIVALENT TO0x227F ≿ ISOamsr # SUCCEEDS OR EQUIVALENT TO0x2280 ⊀ ISOamsn # DOES NOT PRECEDE0x2281 ⊁ ISOamsn # DOES NOT SUCCEED0x2282 ⊂ ISOtech # SUBSET OF0x2283 ⊃ ISOtech # SUPERSET OF0x2284 ⊄ ISOamsn # NOT A SUBSET OF0x2285 ⊅ ISOamsn # NOT A SUPERSET OF0x2286 ⫅ ISOamsr # SUBSET OF OR EQUAL TO0x2286 ⊆ ISOtech # SUBSET OF OR EQUAL TO0x2287 ⫆ ISOamsr # SUPERSET OF OR EQUAL TO0x2287 ⊇ ISOtech # SUPERSET OF OR EQUAL TO0x2288 ⫅̸ ISOamsn # NEITHER A SUBSET OF NOR EQUAL TO0x2288 ⊈ ISOamsn # NEITHER A SUBSET OF NOR EQUAL TO0x2289 ⫆̸ ISOamsn # NEITHER A SUPERSET OF NOR EQUAL TO0x2289 ⊉ ISOamsn # NEITHER A SUPERSET OF NOR EQUAL TO0x228A ⫋ ISOamsn # SUBSET OF WITH NOT EQUAL TO0x228A ⊊ ISOamsn # SUBSET OF WITH NOT EQUAL TO0x228A ⫋︀ ISOamsn # SUBSET OF WITH NOT EQUAL TO0x228A ⊊︀ ISOamsn # SUBSET OF WITH NOT EQUAL TO0x228B ⫌ ISOamsn # SUPERSET OF WITH NOT EQUAL TO0x228B ⊋ ISOamsn # SUPERSET OF WITH NOT EQUAL TO0x228B ⫌︀ ISOamsn # SUPERSET OF WITH NOT EQUAL TO0x228B ⊋︀ ISOamsn # SUPERSET OF WITH NOT EQUAL TO0x228E ⊎ ISOamsb # MULTISET UNION0x228F ⊏ ISOamsr # SQUARE IMAGE OF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -