📄 ex321000.m
字号:
function Particle
% Particle filter
x = 0.1; % 初始状态
Q = 50; % 过程噪声协方差
R = 50; % 测量噪声协方差
tf1 = 100; % 仿真长度
tf = 150;
N =50; % 粒子滤波器粒子数
xhat = x;
P = 2;
xhatPart = x;
% 初始化粒子过滤器
for i = 1 : tf1
xpart(i) = x + sqrt(P) * randn;
end
xArr = [x];
yArr = [-x^2 + sqrt(R) * randn];
xhatArr = [x];
PArr = [P];
xhatPartArr = [xhatPart];
close all;
for k = 1 : tf1
% 系统仿真
x = sqrt(20^2-(x-20).^2) + sqrt(Q) * randn;%状态方程
y = -x^2 + sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F = -2*(x-20)/sqrt(20^2-(x-20).^2) ;
P = F * P * F' + Q;
H = -x^2 ;
K = P * H' * inv(H * P * H' + R);
xhat = sqrt(20^2-(xhat-20).^2);%预测
xhat = xhat + K * (y + xhat^2);%更新
P = (1 - K * H) * P;
for i = 1 : tf1
xpartminus(i) = sqrt(20^2-(xpart(i)-20).^2) + sqrt(Q) * randn;
ypart = -xpartminus(i)^2;
vhat = y - ypart;%观测和预测的差
q(i) = (1 / (sqrt(R^2) * sqrt(2*pi))) * exp(-vhat^2 /( 2 * R^2));
end
%正常化的可能性,每个先验估计
qsum = sum(q);
for i = 1 : tf1
q(i) = q(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : tf1
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : tf1
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
xhatPart = mean(xpart);
xArr = [xArr x];
yArr = [yArr y];
xhatArr = [xhatArr xhat];
PArr = [PArr P];
xhatPartArr = [xhatPartArr xhatPart];
x0=40;
xhat1 = x0;
xhatPart1 = x0;
% 初始化粒子过滤器
for i = 1 : N
xpart1(i) = x0 + sqrt(P) * randn;
end
xArr1 = [x0];
yArr1 = [3*x0 + sqrt(R) * randn];
xhatArr1 = [x0];
xhatPartArr1 = [xhatPart1];
close all;
% 系统仿真
x1 = 3*x0 -20 + sqrt(Q) * randn;%状态方程
y1 = 3*x1+ sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F1 = 3 ;
P1 = F1 * P * F1' + Q;
H1 = 3*xhat1;
K1 = P1* H1' * inv(H1 * P1 * H1' + R);
xhat1 = 3*xhat1-20 ;%预测
xhat1 = xhat1 + K1 * (y1 - 3*xhat1);%更新
P1 = (1 - K1 * H1) * P1;
for i = 1 : N
xpartminus1(i) = 3*xpart1(i) -20 + sqrt(Q) * randn;
ypart1 = xpartminus1(i);
vhat1 = y1 - ypart1;%观测和预测的差
q1(i) = (1 / (sqrt(R^2) * sqrt(2*pi))) * exp(-vhat1^2 /( 2 * R^2));
end
%正常化的可能性,每个先验估计
qsum = sum(q1);
for i = 1 : N
q1(i) = q1(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : N
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart1(i) = xpartminus1(j);
break;
end
end
xhatPart1 = mean(xpart1);
xArr1 = [xArr1 x1];
yArr1 = [yArr1 y1];
xhatArr1 = [xhatArr1 xhat1];
PArr = [PArr P];
xhatPartArr1 = [xhatPartArr1 xhatPart1];
t1 = 0 : tf1;
t2=100:150;
end
end
figure;
plot(t1, xArr, 'b.', t2, xArr1, 'b.',t1,xhatArr,'r',t2,xhatArr1,'r',t1, xhatPartArr, 'k-',t2,xhatPartArr1, 'k-');
xlabel('time step'); ylabel('state');
legend('True state','True state', 'KF', 'KF', 'Particle filter estimate');
figure;
xhatRMS = sqrt((xArr - xhatArr).^2 / tf1);
xhatRMS1 = sqrt((xArr1 - xhatArr1).^2 / (tf-tf1));
subplot(2,1,1),plot(t1,xhatRMS);
title('正弦运动误差值');xlabel('时间'),ylabel('误差标准值(米)');
subplot(2,1,2),plot(t2,xhatRMS1);
title('直线运动误差值');xlabel('时间'),ylabel('误差标准值(米)');
figure;
xhatPartRMS= sqrt((xArr - xhatPartArr).^2 / tf1);
xhatPartRMS1 = sqrt((xArr1 - xhatPartArr1).^2 / (tf-tf1));
subplot(2,1,1),plot(t1,xhatPartRMS);
title('正弦运动误差值');xlabel('时间'),ylabel('误差标准值(米)');
subplot(2,1,2),plot(t2,xhatPartRMS1);
title('直线运动误差值');xlabel('时间'),ylabel('误差标准值(米)');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -