⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ex3211.m

📁 本程序是基于机动目标跟踪课题的整个算法程序
💻 M
字号:
function Particle

% Particle filter 

x = 1; % 初始状态
Q = 1; % 过程噪声协方差
R = 1; % 测量噪声协方差
tf = 100; % 仿真长度

N = 100; % 粒子滤波器粒子数

xhat = x;
P = 2;
xhatPart = x;

% 初始化粒子过滤器
N1=50;
for i = 1 : N1
    xpart(i) = x + sqrt(P) * randn;
end

xArr = [x];
yArr = [3*x + sqrt(R) * randn];
xhatArr = [x];
PArr = [P];
xhatPartArr = [xhatPart];

close all;


    % 系统仿真
    x = 3*x + sqrt(Q) * randn;%状态方程
    y = 3*x + sqrt(R) * randn;%观测方程
     %  卡尔曼滤波
    F = 3;
    P = F * P * F' + Q;
    H = xhat ;
    K = P * H' * inv(H * P * H' + R);
    xhat =  3*xhat ;%预测
    xhat = xhat + K * (y - 3*xhat);%更新
    P = (1 - K * H) * P;
   
    for i = 1 : N1
        xpartminus(i) =3* xpart(i)  + sqrt(Q) * randn;
        ypart = 3*xpartminus(i);
        vhat = y - ypart;%观测和预测的差
        q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
    end
    %正常化的可能性,每个先验估计
    qsum = sum(q);
    for i = 1 : N1
        q(i) = q(i) / qsum;%归一化权重
    end
    % 重采样
    for i = 1 : N1
        u = rand; % 均匀随机数介于0和1
        qtempsum = 0;
        for j = 1 : N1
            qtempsum = qtempsum + q(j);
            if qtempsum >= u
                xpart(i) = xpartminus(j);
                break;
            end
        end
   
    xhatPart = mean(xpart);
    xArr = [xArr x];
    yArr = [yArr y];
    xhatArr = [xhatArr xhat];
    PArr = [PArr P];
    xhatPartArr = [xhatPartArr xhatPart];
    
    x0=50;
    xhat1 = x0;
    xhatPart1 = x0;  
    % 初始化粒子过滤器
for i = 1 : N1
    xpart1(i) = x0 + sqrt(P) * randn;
end

xArr1 = [x0];
yArr1 = [-3*x0 + sqrt(R) * randn];
xhatArr1 = [x0];
xhatPartArr1 = [xhatPart1];

close all;
    % 系统仿真
    x1 = -3* x0  + sqrt(Q) * randn;%状态方程
    y1 = -3*x1+ sqrt(R) * randn;%观测方程
     %  卡尔曼滤波
    F1 = -3 ;
    P1 = F1 * P * F1' + Q;
    H1 = xhat;
    K1 = P1* H1' * inv(H1 * P1 * H1' + R);
    xhat1 = -3 * xhat1 ;%预测
    xhat1 = xhat1 + K1 * (y1 +3*xhat1);%更新
    P1 = (1 - K1 * H1) * P1;
   
    for i = 1 : N1
        xpartminus1(i) =  -3*xpart1(i)  + sqrt(Q) * randn;
        ypart1 = -3*xpartminus1(i);
        vhat1 = y1 - ypart1;%观测和预测的差
        vhat00=sqrt(y1.^2-ypart1.^2);
        q1(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat1^2 / 2 / R);
    end
    %正常化的可能性,每个先验估计
    qsum = sum(q1);
    for i = 1 : N1
        q1(i) = q1(i) / qsum;%归一化权重
    end
    % 重采样
    for i = 1 : N1
        u = rand; % 均匀随机数介于0和1
        qtempsum = 0;
        for j = 1 : N1
            qtempsum = qtempsum + q(j);
            if qtempsum >= u
                xpart1(i) = xpartminus1(j);
                break;
            end
        end
    xhatPart1 = mean(xpart1);
    xArr1 = [xArr1 x1];
    yArr1 = [yArr1 y1];
    xhatArr1 = [xhatArr1 xhat1];
    PArr = [PArr P];
    xhatPartArr1 = [xhatPartArr1 xhatPart1];
    
t1 = 0 : 50;t2=50:100;
  
    end
  end
 

figure;
plot(t1, xArr, 'b.',t2, xArr1, 'b.', t1,xhatArr,'r', t2,xhatArr1,'r',t1, xhatPartArr, 'k-',t2, xhatPartArr1, 'k-');
xlabel('time step'); ylabel('state');
legend('True state','KF', 'Particle filter estimate');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -